An Algorithm for Analyzing the Transitive Behavior of Reversible One-Dimensional Cellular Automata with Both Welch Indices Different

An algorithm is presented for analyzing the transitive behavior of reversible one-dimensional cellular automata, where reversibility refers to injective cellular automata which have a bijective behavior for spatially periodic configurations. In particular we study reversible automata where the ancestors of finite sequences differ at both ends (technically, with both Welch indices different from 1). The algorithm uses the combinatorial properties of reversible automata and their characterization by block permutations. A matrix presentation of the dynamical behavior and examples are presented.

[1]  Douglas Lind,et al.  An Introduction to Symbolic Dynamics and Coding , 1995 .

[2]  M. Garzon Linear Cellular Automata , 1995 .

[3]  C. Robinson Dynamical Systems: Stability, Symbolic Dynamics, and Chaos , 1994 .

[4]  J. Goldman,et al.  LINEAR CELLULAR AUTOMATA WITH , 1990 .

[5]  Jarkko Kari,et al.  On the Inverse Neighborhoods of Reversible Cellular Automata , 1992 .

[6]  Stephen Wolfram,et al.  Theory and Applications of Cellular Automata , 1986 .

[7]  John von Neumann,et al.  Theory Of Self Reproducing Automata , 1967 .

[8]  Master Gardener,et al.  Mathematical games: the fantastic combinations of john conway's new solitaire game "life , 1970 .

[9]  Giancarlo Mauri,et al.  On the Dynamical Behavior of Chaotic Cellular Automata , 1999, Theor. Comput. Sci..

[10]  G. A. Hedlund Endomorphisms and automorphisms of the shift dynamical system , 1969, Mathematical systems theory.

[11]  John Watrous,et al.  On one-dimensional quantum cellular automata , 1995, Proceedings of IEEE 36th Annual Foundations of Computer Science.

[12]  Petr Kurka,et al.  Topological and measure-theoretic properties of one-dimensional cellular automata , 1997 .

[13]  Petr Kurka,et al.  Cellular Automata in the Cantor, Besicovitch, and Weyl Topological Spaces , 1997, Complex Syst..

[14]  Howard Gutowitz,et al.  Cryptography with Dynamical Systems , 1993 .

[15]  Touh Mora,et al.  Autómatas celulares lineales reversibles y permutaciones en bloque , 2000 .

[16]  Carsten Knudsen,et al.  Chaos Without Nonperiodicity , 1994 .

[17]  J. Kari Representation of reversible cellular automata with block permutations , 1996, Mathematical systems theory.

[18]  D. Chillingworth DYNAMICAL SYSTEMS: STABILITY, SYMBOLIC DYNAMICS AND CHAOS , 1998 .

[19]  Tommaso Toffoli,et al.  Cellular Automata Machines , 1987, Complex Syst..