A new selection metric for multiobjective hydrologic model calibration

A novel selection metric called Convex Hull Contribution (CHC) is introduced for solving multiobjective (MO) optimization problems with Pareto fronts that can be accurately approximated by a convex curve. The hydrologic model calibration literature shows that many biobjective calibration problems with a proper setup result in such Pareto fronts. The CHC selection approach identifies a subset of archived nondominated solutions whose map in the objective space forms convex approximation of the Pareto front. The optimization algorithm can sample solely from these solutions to more accurately approximate the convex shape of the Pareto front. It is empirically demonstrated that CHC improves the performance of Pareto Archived Dynamically Dimensioned Search (PA‐DDS) when solving MO problems with convex Pareto fronts. This conclusion is based on the results of several benchmark mathematical problems and several hydrologic model calibration problems with two or three objective functions. The impact of CHC on PA‐DDS performance is most evident when the computational budget is somewhat limited. It is also demonstrated that 1,000 solution evaluations (limited budget in this study) is sufficient for PA‐DDS with CHC‐based selection to achieve very high quality calibration results relative to the results achieved after 10,000 solution evaluations.

[1]  K. Dejong,et al.  An analysis of the behavior of a class of genetic adaptive systems , 1975 .

[2]  C. Hwang Multiple Objective Decision Making - Methods and Applications: A State-of-the-Art Survey , 1979 .

[3]  H. Levy Stochastic dominance and expected utility: survey and analysis , 1992 .

[4]  Soroosh Sorooshian,et al.  Calibration of rainfall‐runoff models: Application of global optimization to the Sacramento Soil Moisture Accounting Model , 1993 .

[5]  David P. Dobkin,et al.  The quickhull algorithm for convex hulls , 1996, TOMS.

[6]  Chung-Wei Feng,et al.  Using genetic algorithms to solve construction time-cost trade-off problems , 1997 .

[7]  Soroosh Sorooshian,et al.  Multi-objective global optimization for hydrologic models , 1998 .

[8]  Lothar Thiele,et al.  Multiobjective Optimization Using Evolutionary Algorithms - A Comparative Case Study , 1998, PPSN.

[9]  Soroosh Sorooshian,et al.  Toward improved calibration of hydrologic models: Multiple and noncommensurable measures of information , 1998 .

[10]  Thomas Hanne,et al.  On the convergence of multiobjective evolutionary algorithms , 1999, Eur. J. Oper. Res..

[11]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[12]  Henrik Madsen,et al.  Automatic calibration of a conceptual rainfall-runoff model using multiple objectives. , 2000 .

[13]  Carlos A. Coello Coello,et al.  A Short Tutorial on Evolutionary Multiobjective Optimization , 2001, EMO.

[14]  J. Periaux,et al.  Evolutionary Methods for Design, Optimization and Control with Applications to Industrial Problems , 2001 .

[15]  Marco Laumanns,et al.  Scalable test problems for evolutionary multi-objective optimization , 2001 .

[16]  Luis A. Bastidas,et al.  Calibrating a land surface model of varying complexity using multicriteria methods and the Cabauw dataset , 2002 .

[17]  S. Sorooshian,et al.  A Shuffled Complex Evolution Metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters , 2002 .

[18]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[19]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[20]  Marco Laumanns,et al.  SPEA2: Improving the Strength Pareto Evolutionary Algorithm For Multiobjective Optimization , 2002 .

[21]  Joshua D. Knowles,et al.  Bounded archiving using the lebesgue measure , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[22]  S. Sorooshian,et al.  Effective and efficient algorithm for multiobjective optimization of hydrologic models , 2003 .

[23]  Henrik Madsen,et al.  Parameter estimation in distributed hydrological catchment modelling using automatic calibration with multiple objectives , 2003 .

[24]  Jonathan E. Fieldsend,et al.  Using unconstrained elite archives for multiobjective optimization , 2003, IEEE Trans. Evol. Comput..

[25]  Marco Laumanns,et al.  Performance assessment of multiobjective optimizers: an analysis and review , 2003, IEEE Trans. Evol. Comput..

[26]  Kiyoshi Tanaka,et al.  Local dominance using polar coordinates to enhance multiobjective evolutionary algorithms , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[27]  Bernhard Sendhoff,et al.  On Test Functions for Evolutionary Multi-objective Optimization , 2004, PPSN.

[28]  Kevin Tucker,et al.  Response surface approximation of pareto optimal front in multi-objective optimization , 2004 .

[29]  Christine A. Shoemaker,et al.  Comparison of function approximation, heuristic, and derivative‐based methods for automatic calibration of computationally expensive groundwater bioremediation models , 2005 .

[30]  H. Madsen,et al.  Multiobjective calibration with Pareto preference ordering: An application to rainfall‐runoff model calibration , 2005 .

[31]  Patrick M. Reed,et al.  The Value of Online Adaptive Search: A Performance Comparison of NSGAII, epsilon-NSGAII and epsilonMOEA , 2005, EMO.

[32]  Wesley W. Wallender,et al.  Multi-criteria optimization of a regional spatially-distributed subsurface water flow model , 2005 .

[33]  Gerrit Schoups,et al.  Multi-objective calibration of a surface water-groundwater flow model in an irrigated agricultural region: Yaqui Valley, Sonora, Mexico , 2005 .

[34]  Nicola Beume,et al.  An EMO Algorithm Using the Hypervolume Measure as Selection Criterion , 2005, EMO.

[35]  Patrick M. Reed,et al.  How effective and efficient are multiobjective evolutionary algorithms at hydrologic model calibration , 2005 .

[36]  Luis A. Bastidas,et al.  Multiobjective particle swarm optimization for parameter estimation in hydrology , 2006 .

[37]  Etienne Leblois,et al.  Multi-objective regional modelling , 2006 .

[38]  Günter Blöschl,et al.  Uncertainty and multiple objective calibration in regional water balance modelling: case study in 320 Austrian catchments , 2007 .

[39]  Remegio Confesor,et al.  Automatic Calibration of Hydrologic Models With Multi‐Objective Evolutionary Algorithm and Pareto Optimization 1 , 2007 .

[40]  Wei-Mei Chen,et al.  An efficient evolutionary algorithm for multiobjective optimization problems , 2007, 2007 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing.

[41]  Hubert H. G. Savenije,et al.  Soft combination of local models in a multi-objective framework , 2007 .

[42]  I-Tung Yang,et al.  Pareto archived PSO optimization for time-cost tradeoff analysis , 2007, 2007 IEEE Congress on Evolutionary Computation.

[43]  Raphael T. Haftka,et al.  Response surface approximation of Pareto optimal front in multi-objective optimization , 2007 .

[44]  John W. Nicklow,et al.  Multi-objective automatic calibration of SWAT using NSGA-II , 2007 .

[45]  N. J. DE VOS,et al.  Multi-objective performance comparison of an artificial neural network and a conceptual rainfall—runoff model , 2007 .

[46]  Roger Moussa,et al.  Comparison of different multi-objective calibration criteria using a conceptual rainfall-runoff model of flood events. , 2007 .

[47]  Yong Tang,et al.  Parallelization strategies for rapid and robust evolutionary multiobjective optimization in water resources applications , 2007 .

[48]  Beatrice Lazzerini,et al.  A new multi-objective evolutionary algorithm based on convex hull for binary classifier optimization , 2007, 2007 IEEE Congress on Evolutionary Computation.

[49]  Bryan A. Tolson,et al.  Dynamically dimensioned search algorithm for computationally efficient watershed model calibration , 2007 .

[50]  Hubert H. G. Savenije,et al.  A comparison of alternative multiobjective calibration strategies for hydrological modeling , 2007 .

[51]  Chris Murphy,et al.  Dominance-Based Multiobjective Simulated Annealing , 2008, IEEE Transactions on Evolutionary Computation.

[52]  Henrik Madsen,et al.  Incorporating multiple observations for distributed hydrologic model calibration : An approach using a multi-objective evolutionary algorithm and clustering , 2008 .

[53]  Kaisa Miettinen,et al.  Introduction to Multiobjective Optimization: Interactive Approaches , 2008, Multiobjective Optimization.

[54]  Hoshin Vijai Gupta,et al.  Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling , 2009 .

[55]  Bryan A. Tolson,et al.  A new multi-objective algorithm, pareto archived DDS , 2009, GECCO '09.

[56]  Aaron C. Zecchin,et al.  Hybrid discrete dynamically dimensioned search (HD‐DDS) algorithm for water distribution system design optimization , 2009 .

[57]  Qingfu Zhang,et al.  Multiobjective Optimization Problems With Complicated Pareto Sets, MOEA/D and NSGA-II , 2009, IEEE Transactions on Evolutionary Computation.

[58]  Qingfu Zhang,et al.  Multiobjective optimization Test Instances for the CEC 2009 Special Session and Competition , 2009 .

[59]  R. K. Ursem Multi-objective Optimization using Evolutionary Algorithms , 2009 .

[60]  Hoshin V. Gupta,et al.  On the use of spatial regularization strategies to improve calibration of distributed watershed models , 2010 .

[61]  Mansooreh Mollaghasemi,et al.  An Adaptive Multiobjective Approach to Evolving ART Architectures , 2010, IEEE Transactions on Neural Networks.

[62]  Demetris Koutsoyiannis,et al.  One decade of multi-objective calibration approaches in hydrological modelling: a review , 2010 .

[63]  Xuesong Zhang,et al.  On the use of multi‐algorithm, genetically adaptive multi‐objective method for multi‐site calibration of the SWAT model , 2010 .

[64]  Liang-Cheng Chang,et al.  Applying Multiobjective Genetic Algorithm to Analyze the Conflict among Different Water Use Sectors during Drought Period , 2010 .

[65]  A. Mangin,et al.  A multi-objective calibration framework for rainfall–discharge models applied to karst systems , 2011 .

[66]  K. Takara,et al.  Comparison of model structural uncertainty using a multi‐objective optimisation method , 2011 .

[67]  Elizabeth F. Wanner,et al.  A Multicriteria Statistical Based Comparison Methodology for Evaluating Evolutionary Algorithms , 2011, IEEE Transactions on Evolutionary Computation.

[68]  Subhabrata Chakraborti,et al.  Nonparametric Statistical Inference , 2011, International Encyclopedia of Statistical Science.

[69]  Kaisa Miettinen,et al.  PAINT: Pareto front interpolation for nonlinear multiobjective optimization , 2012, Comput. Optim. Appl..

[70]  Hoshin Vijai Gupta,et al.  Multiple-criteria calibration of a distributed watershed model using spatial regularization and response signatures , 2012 .

[71]  Masoud Asadzadeh,et al.  Hybrid Pareto archived dynamically dimensioned search for multi-objective combinatorial optimization: application to water distribution network design , 2012 .

[72]  Patrick M. Reed,et al.  Diagnostic Assessment of Search Controls and Failure Modes in Many-Objective Evolutionary Optimization , 2012, Evolutionary Computation.

[73]  Patrick M. Reed,et al.  When are multiobjective calibration trade‐offs in hydrologic models meaningful? , 2012 .

[74]  Patrick M. Reed,et al.  Borg: An Auto-Adaptive Many-Objective Evolutionary Computing Framework , 2013, Evolutionary Computation.

[75]  Bryan A. Tolson,et al.  Pareto archived dynamically dimensioned search with hypervolume-based selection for multi-objective optimization , 2013 .

[76]  G. Schoupsa,et al.  Multi-criteria optimization of a regional spatially-distributed subsurface water flow model , 2016 .