The Reduced Phase Space of Palatini–Cartan–Holst Theory
暂无分享,去创建一个
[1] M. Schiavina,et al. BV equivalence between triadic gravity and BF theory in three dimensions , 2017, 1707.07764.
[2] M. Schiavina,et al. BV-BFV approach to general relativity: Einstein-Hilbert action , 2015, 1509.05762.
[3] W. Trageser. Einheitliche Feldtheorie von Gravitation und Elektrizität , 2016 .
[4] M. Schiavina. BV-BFV approach to general relativity , 2015 .
[5] A. S. Cattaneo,et al. Classical BV Theories on Manifolds with Boundary , 2011, 1201.0290.
[6] F. Hehl,et al. Gauge Theories Of Gravitation: A Reader With Commentaries , 2013 .
[7] N. Reshetikhin,et al. Classical and quantum Lagrangian field theories with boundary , 2012, 1207.0239.
[8] D. Wise. Symmetric Space Cartan Connections and Gravity in Three and Four Dimensions , 2009, 0904.1738.
[9] Danilo Jimenez Rezende,et al. Four-dimensional Lorentzian Holst action with topological terms , 2009, 0902.3416.
[10] F. Schaetz. INVARIANCE OF THE BFV COMPLEX , 2008, 0812.2357.
[11] Claus Kiefer,et al. Modern Canonical Quantum General Relativity , 2008 .
[12] Florian Schätz. BFV-Complex and Higher Homotopy Structures , 2006, math/0611912.
[13] C. Rovelli,et al. The Immirzi parameter in quantum general relativity , 1997, gr-qc/9705059.
[14] G. Immirzi. Real and complex connections for canonical gravity , 1996, gr-qc/9612030.
[15] Holst,et al. Barbero's Hamiltonian derived from a generalized Hilbert-Palatini action. , 1995, Physical review. D, Particles and fields.
[16] J. F. Barbero,et al. Real Ashtekar variables for Lorentzian signature space-times. , 1994, gr-qc/9410014.
[17] R. Percacci,et al. Palatini formalism and new canonical variables for GL(4) invariant gravity , 1990 .
[18] A. Ashtekar,et al. New variables for classical and quantum gravity. , 1986, Physical review letters.
[19] I. Batalin,et al. A Generalized Canonical Formalism and Quantization of Reducible Gauge Theories , 1983 .
[20] Richard S. Hamilton,et al. The inverse function theorem of Nash and Moser , 1982 .
[21] M. Francaviglia,et al. Variational formulation of general relativity from 1915 to 1925 “Palatini's method” discovered by Einstein in 1925 , 1982 .
[22] I. Batalin,et al. Gauge Algebra and Quantization , 1981 .
[23] R. Hojman,et al. Parity violation in metric-torsion theories of gravitation , 1980 .
[24] J. Kijowski,et al. A Symplectic Framework for Field Theories , 1979 .
[25] I. Batalin,et al. Relativistic S Matrix of Dynamical Systems with Boson and Fermion Constraints , 1977 .
[26] J. Marsden,et al. Reduction of symplectic manifolds with symmetry , 1974 .
[27] D. Sciama. The Physical structure of general relativity , 1964 .
[28] T. Kibble. Lorentz Invariance and the Gravitational Field , 1961 .
[29] Paul Adrien Maurice Dirac,et al. Generalized Hamiltonian dynamics , 1958, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.
[30] A. Palatini. Deduzione invariantiva delle equazioni gravitazionali dal principio di Hamilton , 1919 .
[31] V. A. JULIUS,et al. On Time , 1877, Nature.