The Reduced Phase Space of Palatini–Cartan–Holst Theory

[1]  M. Schiavina,et al.  BV equivalence between triadic gravity and BF theory in three dimensions , 2017, 1707.07764.

[2]  M. Schiavina,et al.  BV-BFV approach to general relativity: Einstein-Hilbert action , 2015, 1509.05762.

[3]  W. Trageser Einheitliche Feldtheorie von Gravitation und Elektrizität , 2016 .

[4]  M. Schiavina BV-BFV approach to general relativity , 2015 .

[5]  A. S. Cattaneo,et al.  Classical BV Theories on Manifolds with Boundary , 2011, 1201.0290.

[6]  F. Hehl,et al.  Gauge Theories Of Gravitation: A Reader With Commentaries , 2013 .

[7]  N. Reshetikhin,et al.  Classical and quantum Lagrangian field theories with boundary , 2012, 1207.0239.

[8]  D. Wise Symmetric Space Cartan Connections and Gravity in Three and Four Dimensions , 2009, 0904.1738.

[9]  Danilo Jimenez Rezende,et al.  Four-dimensional Lorentzian Holst action with topological terms , 2009, 0902.3416.

[10]  F. Schaetz INVARIANCE OF THE BFV COMPLEX , 2008, 0812.2357.

[11]  Claus Kiefer,et al.  Modern Canonical Quantum General Relativity , 2008 .

[12]  Florian Schätz BFV-Complex and Higher Homotopy Structures , 2006, math/0611912.

[13]  C. Rovelli,et al.  The Immirzi parameter in quantum general relativity , 1997, gr-qc/9705059.

[14]  G. Immirzi Real and complex connections for canonical gravity , 1996, gr-qc/9612030.

[15]  Holst,et al.  Barbero's Hamiltonian derived from a generalized Hilbert-Palatini action. , 1995, Physical review. D, Particles and fields.

[16]  J. F. Barbero,et al.  Real Ashtekar variables for Lorentzian signature space-times. , 1994, gr-qc/9410014.

[17]  R. Percacci,et al.  Palatini formalism and new canonical variables for GL(4) invariant gravity , 1990 .

[18]  A. Ashtekar,et al.  New variables for classical and quantum gravity. , 1986, Physical review letters.

[19]  I. Batalin,et al.  A Generalized Canonical Formalism and Quantization of Reducible Gauge Theories , 1983 .

[20]  Richard S. Hamilton,et al.  The inverse function theorem of Nash and Moser , 1982 .

[21]  M. Francaviglia,et al.  Variational formulation of general relativity from 1915 to 1925 “Palatini's method” discovered by Einstein in 1925 , 1982 .

[22]  I. Batalin,et al.  Gauge Algebra and Quantization , 1981 .

[23]  R. Hojman,et al.  Parity violation in metric-torsion theories of gravitation , 1980 .

[24]  J. Kijowski,et al.  A Symplectic Framework for Field Theories , 1979 .

[25]  I. Batalin,et al.  Relativistic S Matrix of Dynamical Systems with Boson and Fermion Constraints , 1977 .

[26]  J. Marsden,et al.  Reduction of symplectic manifolds with symmetry , 1974 .

[27]  D. Sciama The Physical structure of general relativity , 1964 .

[28]  T. Kibble Lorentz Invariance and the Gravitational Field , 1961 .

[29]  Paul Adrien Maurice Dirac,et al.  Generalized Hamiltonian dynamics , 1958, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[30]  A. Palatini Deduzione invariantiva delle equazioni gravitazionali dal principio di Hamilton , 1919 .

[31]  V. A. JULIUS,et al.  On Time , 1877, Nature.