On the facial structure of Symmetric and Graphical Traveling Salesman Polyhedra

Abstract The Symmetric Traveling Salesman Polytope S for a fixed number n of cities is a face of the corresponding Graphical Traveling Salesman Polyhedron P . This has been used to study facets of S using P as a tool. In this paper, we study the operation of “rotating” (or “lifting”) valid inequalities for S to obtain a valid inequalities for P . As an application, we describe a surprising relationship between (a) the parsimonious property of relaxations of the Symmetric Traveling Salesman Polytope and (b) a connectivity property of the ridge graph of the Graphical Traveling Salesman Polyhedron.

[1]  Martin Grötschel,et al.  On the symmetric travelling salesman problem I: Inequalities , 1979, Math. Program..

[2]  Adam N. Letchford,et al.  On a class of metrics related to graph layout problems , 2007, 0709.0910.

[3]  William J. Cook,et al.  Solution of a Large-Scale Traveling-Salesman Problem , 1954, 50 Years of Integer Programming.

[4]  Fred J. Rispoli The monotonic diameter of traveling salesman polytopes , 1998, Oper. Res. Lett..

[5]  Denis Naddef,et al.  Polyhedral Theory and Branch-and-Cut Algorithms for the Symmetric TSP , 2007 .

[6]  Michel X. Goemans,et al.  Worst-case comparison of valid inequalities for the TSP , 1995, Math. Program..

[7]  Eugene L. Lawler,et al.  Traveling Salesman Problem , 2016 .

[8]  Gerard Sierksma,et al.  Interchange Graphs and the Hamiltonian Cycle Polytope , 1998, Discret. Appl. Math..

[9]  William J. Cook,et al.  The Traveling Salesman Problem: A Computational Study , 2007 .

[10]  Dirk Oliver Theis Subdividing the polar of a face , 2007 .

[11]  Gerhard Reinelt,et al.  Traveling salesman problem , 2012 .

[12]  Gerhard Reinelt,et al.  Algorithmic Aspects of Using Small Instance Relaxations in Parallel Branch-and-Cut , 2001, Algorithmica.

[13]  Gerhard Reinelt,et al.  Decomposition and Parallelization Techniques for Enumerating the Facets of Combinatorial Polytopes , 2001, Int. J. Comput. Geom. Appl..

[14]  M. Padberg,et al.  On the symmetric travelling salesman problem II , 1979 .

[15]  Gerhard Reinelt,et al.  Not Every GTSP Facet Induces an STSP Facet , 2005, IPCO.

[16]  Giovanni Rinaldi,et al.  The Symmetric Traveling Salesman Polytope: New Facets from the Graphical Relaxation , 2007, Math. Oper. Res..

[17]  G. Rinaldi,et al.  Chapter 4 The traveling salesman problem , 1995 .

[18]  Gerard Sierksma,et al.  Faces of diameter two on the Hamiltonian cycle polytype , 1995, Oper. Res. Lett..

[19]  I. Heller Neighbor relations on the convex of cyclic permutations. , 1956 .

[20]  Giovanni Rinaldi,et al.  The symmetric traveling salesman polytope and its graphical relaxation: Composition of valid inequalities , 1991, Math. Program..

[21]  William J. Cook,et al.  TSP Cuts Which Do Not Conform to the Template Paradigm , 2000, Computational Combinatorial Optimization.

[22]  Robert D. Carr Separation Algorithms for Classes of STSP Inequalities Arising from a New STSP Relaxation , 2004, Math. Oper. Res..

[23]  Gerhard Reinelt,et al.  On the graphical relaxation of the symmetric traveling salesman polytope , 2007, Math. Program..

[24]  William J. Cook,et al.  The Traveling Salesman Problem: A Computational Study (Princeton Series in Applied Mathematics) , 2007 .

[25]  G. C. Shephard,et al.  Convex Polytopes , 1969, The Mathematical Gazette.

[26]  George B. Dantzig,et al.  Solution of a Large-Scale Traveling-Salesman Problem , 1954, Oper. Res..

[27]  Gerard Sierksma,et al.  Faces with large diameter on the symmetric traveling salesman polytope , 1992, Oper. Res. Lett..

[28]  G. Reinelt,et al.  Combinatorial optimization and small polytopes , 1996 .

[29]  Yves Pochet,et al.  The Symmetric Traveling Salesman Polytope Revisited , 2001, Math. Oper. Res..

[30]  Gregory Gutin,et al.  The traveling salesman problem , 2006, Discret. Optim..

[31]  Michael Jünger,et al.  A complete description of the traveling salesman polytope on 8 nodes , 1991, Oper. Res. Lett..

[32]  Giovanni Rinaldi,et al.  The graphical relaxation: A new framework for the symmetric traveling salesman polytope , 1993, Math. Program..

[33]  Alexander Schrijver,et al.  Combinatorial optimization. Polyhedra and efficiency. , 2003 .

[34]  Steven Cosares,et al.  A Bound of 4 for the Diameter of the Symmetric Traveling Salesman Polytope , 1998, SIAM J. Discret. Math..

[35]  Michel X. Goemans,et al.  Survivable networks, linear programming relaxations and the parsimonious property , 1993, Math. Program..

[36]  William J. Cook,et al.  Implementing the Dantzig-Fulkerson-Johnson algorithm for large traveling salesman problems , 2003, Math. Program..

[37]  Louis J. Billera,et al.  All 0–1 polytopes are traveling salesman polytopes , 1996, Comb..

[38]  G. Ziegler Lectures on Polytopes , 1994 .

[39]  Dirk Oliver Theis A note on the relationship between the graphical traveling salesman polyhedron, the Symmetric Traveling Salesman Polytope, and the metric cone , 2010, Discret. Appl. Math..

[40]  Jean Fonlupt,et al.  The traveling salesman problem in graphs with some excluded minors , 1992, Math. Program..

[41]  Gérard Cornuéjols,et al.  The traveling salesman problem on a graph and some related integer polyhedra , 1985, Math. Program..

[42]  William H. Cunningham,et al.  Small Travelling Salesman Polytopes , 1991, Math. Oper. Res..