Beyond Basic Logics and Standard Systems

This Chapter has a transitional character. We consider several ways of extending standard approach presented in the last Chapter and point out their limitations. Section 7.1. is devoted to an application of standard approach in ND to other modal logics. We discuss them in order of complications they introduce into the structure of ND.

[1]  M. de Rijke,et al.  Modal Logic , 2001, Cambridge Tracts in Theoretical Computer Science.

[2]  Rajeev Goré,et al.  Tableau Methods for Modal and Temporal Logics , 1999 .

[3]  Andrzej Indrzejczak,et al.  Cut-free Double Sequent Calculus for S5 , 1998, Log. J. IGPL.

[4]  Ryo Kashima,et al.  Cut-free sequent calculi for some tense logics , 1994, Stud Logica.

[5]  H. Nishimura A Study of Some Tense Logics by Gentzen's Sequential Method , 1980 .

[6]  Max J. Cresswell,et al.  A New Introduction to Modal Logic , 1998 .

[7]  George Boolos,et al.  Computability and Logic: The Unprovability of Consistency , 2007 .

[8]  Andrzej Indrzejczak,et al.  SEQUENT CALCULI FOR MONOTONIC MODAL LOGICS , 2005 .

[9]  M. Fitting Proof Methods for Modal and Intuitionistic Logics , 1983 .

[10]  Tatsuya Shimura,et al.  Cut-Free Systems for the Modal Logic S4.3 and S4.3Grz , 1991, Reports Math. Log..

[11]  Melvin Fitting,et al.  Destructive Modal Resolution , 1990, J. Log. Comput..

[12]  William A. Wisdom Possibility-elimination in natural deduction , 1964, Notre Dame J. Formal Log..

[13]  Ian Horrocks,et al.  Practical Reasoning for Very Expressive Description Logics , 2000, Log. J. IGPL.

[14]  Heinrich Wansing,et al.  Sequent Systems for Modal Logics , 2002 .

[15]  Kazuo Matsumoto,et al.  Gentzen method in modal calculi. II , 1957 .

[16]  Alasdair Urquhart,et al.  Temporal Logic , 1971 .

[17]  M. Sato A Study of Kripke-type Models for Some Modal Logics by Gentzen's Sequential Method , 1977 .

[18]  Silvio Valentini,et al.  The modal logic of provability: Cut-elimination , 1983, J. Philos. Log..

[19]  Silvio Valentini,et al.  A modal sequent calculus for a fragment of arithmetic , 1980 .

[20]  Heinrich Zimmermann,et al.  Efficient Loop-Check for Backward Proof Search in Some Non-classical Propositional Logics , 1996, TABLEAUX.

[21]  Allen P. Hazen,et al.  Actuality and Quantification , 1990, Notre Dame J. Formal Log..

[22]  Saul Kripke,et al.  A completeness theorem in modal logic , 1959, Journal of Symbolic Logic.

[23]  Rajeev Goré,et al.  Cut-free sequent and tableau systems for propositional Diodorean modal logics , 1994, Stud Logica.

[24]  H. Wansing Displaying Modal Logic , 1998 .

[25]  Phiniki Stouppa A Deep Inference System for the Modal Logic S5 , 2007, Stud Logica.

[26]  James W. Garson Modal Logic for Philosophers , 2006 .

[27]  John Hawthorn,et al.  Natural Deduction in Normal Modal Logic , 1990, Notre Dame J. Formal Log..

[28]  G. F. Shvarts,et al.  Gentzen Style Systems for K45 and K45D , 1989, Logic at Botik.

[29]  Kosta Dosen,et al.  Sequent-systems for modal logic , 1985, Journal of Symbolic Logic.

[30]  Wolfgang Rautenberg,et al.  Modal tableau calculi and interpolation , 1983, J. Philos. Log..

[31]  Saul A. Kripke,et al.  Semantical Analysis of Modal Logic I Normal Modal Propositional Calculi , 1963 .

[32]  Silvio Valentini,et al.  The modal logic of provability. The sequential approach , 1982, J. Philos. Log..

[33]  Andrzej Indrzejczak Generalised sequent calculus for propositional modal logics , 1997 .

[34]  E. Beth,et al.  The Foundations of Mathematics , 1961 .