Admissible simulation relations, set-valued feedback, and controlled invariance

This work is a continuation of the author’s study of simulation relations between nonlinear input–output systems with disturbances. Previously we derived a criterion under which a “pointwise” simulation condition implies simulation by so-called “admissible” inputs and disturbances (that is, inputs and disturbances that yield time-dependent vector fields satisfying C1 Carathéodory conditions). This criterion included a certain constant-rank assumption. In this paper we use the theory of set-valued mappings and differential inclusions to derive analogous results in which the constant-rank assumption is replaced by a compactness provision that augments the pointwise simulation condition. We illustrate our simulation results by deriving a sufficient condition for achieving global controlled invariance of a (possibly singular) nonlinear system through the use of a set-valued feedback law.

[1]  H. Sussmann,et al.  Global controllability by nice controls , 1990 .

[2]  Sussmann Nonlinear Controllability and Optimal Control , 1990 .

[3]  George J. Pappas,et al.  Consistent abstractions of affine control systems , 2002, IEEE Trans. Autom. Control..

[4]  Arjan van der Schaft,et al.  Bisimulation of Dynamical Systems , 2004, HSCC.

[5]  George J. Pappas,et al.  Bisimilar control affine systems , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[6]  A. J. van der Schaft Equivalence of dynamical systems by bisimulation , 2004, IEEE Transactions on Automatic Control.

[7]  Kevin A. Grasse,et al.  Admissibility of Trajectories for Control Systems Related by Smooth Mappings , 2003, Math. Control. Signals Syst..

[8]  Kevin A. Grasse,et al.  Simulation and Bisimulation of Nonlinear Control Systems with Admissible Classes of Inputs and Disturbances , 2007, SIAM J. Control. Optim..

[9]  Paulo Tabuada,et al.  Quotients of Fully Nonlinear Control Systems , 2005, SIAM J. Control. Optim..

[10]  K. Deimling Multivalued Differential Equations , 1992 .

[11]  F. W. Warner Foundations of Differentiable Manifolds and Lie Groups , 1971 .

[12]  Anthony M. Bloch,et al.  Nonlinear Dynamical Control Systems (H. Nijmeijer and A. J. van der Schaft) , 1991, SIAM Review.

[13]  H. Nijmeijer Controlled invariance for affine control systems , 1981 .

[14]  Kevin A. Grasse,et al.  On controlled invariance for fully nonlinear systems , 1992 .

[15]  C. J. Himmelberg,et al.  On measurable relations , 1982 .

[16]  K. Grasse On Controlled Invariance for a Simple Class of Distributions with Singularities , 1996 .

[17]  A. Isidori,et al.  Locally (f,g) invariant distributions* , 1981 .

[18]  George J. Pappas Bisimilar linear systems , 2003, Autom..

[19]  Paulo Tabuada,et al.  Hierarchical trajectory generation for a class of nonlinear systems , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[20]  Kevin A. Grasse,et al.  Lifting of trajectories of control systems related by smooth mappings , 2005, Syst. Control. Lett..

[21]  Arjan van der Schaft,et al.  Nonsquare spectral factorization for nonlinear control systems , 2005, IEEE Transactions on Automatic Control.

[22]  Paulo Tabuada,et al.  Bisimulation Relations for Dynamical and Control Systems , 2003, CTCS.

[23]  A. Isidori Nonlinear Control Systems , 1985 .