Adaptive Local Iterative Filtering for Signal Decomposition and Instantaneous Frequency analysis

[1]  D. Gabor,et al.  Theory of communication. Part 1: The analysis of information , 1946 .

[2]  S. Osher,et al.  Uniformly high order accurate essentially non-oscillatory schemes, 111 , 1987 .

[3]  Leon Cohen,et al.  Time Frequency Analysis: Theory and Applications , 1994 .

[4]  S. Hahn Hilbert Transforms in Signal Processing , 1996 .

[5]  P. Loughlin,et al.  Comments on the interpretation of instantaneous frequency , 1997, IEEE Signal Processing Letters.

[6]  N. Huang,et al.  The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[7]  A. Bovik,et al.  On the instantaneous frequencies of multicomponent AM-FM signals , 1998, IEEE Signal Processing Letters.

[8]  Chi-Wang Shu,et al.  High Order ENO and WENO Schemes for Computational Fluid Dynamics , 1999 .

[9]  N. Huang,et al.  A new view of nonlinear water waves: the Hilbert spectrum , 1999 .

[10]  Karlheinz Gröchenig,et al.  Foundations of Time-Frequency Analysis , 2000, Applied and numerical harmonic analysis.

[11]  Gabriel Rilling,et al.  On empirical mode decomposition and its algorithms , 2003 .

[12]  S. S. Shen,et al.  A confidence limit for the empirical mode decomposition and Hilbert spectral analysis , 2003, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[13]  N. Huang,et al.  A study of the characteristics of white noise using the empirical mode decomposition method , 2004, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[14]  R. Sharpley,et al.  Analysis of the Intrinsic Mode Functions , 2006 .

[15]  Michael Feldman,et al.  Time-varying vibration decomposition and analysis based on the Hilbert transform , 2006 .

[16]  Sylvain Meignen,et al.  A New Formulation for Empirical Mode Decomposition Based on Constrained Optimization , 2007, IEEE Signal Processing Letters.

[17]  Marc G. Genton,et al.  Statistical inference for evolving periodic functions , 2007 .

[18]  Gabriel Rilling,et al.  One or Two Frequencies? The Empirical Mode Decomposition Answers , 2008, IEEE Transactions on Signal Processing.

[19]  Hau-Tieng Wu,et al.  Synchrosqueezed Wavelet Transforms: a Tool for Empirical Mode Decomposition , 2009 .

[20]  Gabriel Rilling,et al.  Sampling Effects on the Empirical Mode Decomposition , 2009, Adv. Data Sci. Adapt. Anal..

[21]  Norden E. Huang,et al.  On Instantaneous Frequency , 2009, Adv. Data Sci. Adapt. Anal..

[22]  Norden E. Huang,et al.  Ensemble Empirical Mode Decomposition: a Noise-Assisted Data Analysis Method , 2009, Adv. Data Sci. Adapt. Anal..

[23]  Zhaohua Wu,et al.  A Variant of the EMD Method for Multi-Scale Data , 2009, Adv. Data Sci. Adapt. Anal..

[24]  Yang Wang,et al.  Iterative Filtering as an Alternative Algorithm for Empirical Mode Decomposition , 2009, Adv. Data Sci. Adapt. Anal..

[25]  Norden E. Huang,et al.  STATISTICAL SIGNIFICANCE TEST OF INTRINSIC MODE FUNCTIONS , 2010 .

[26]  Radjesvarane Alexandre,et al.  Analysis of Intrinsic Mode Functions: A PDE Approach , 2010, IEEE Signal Processing Letters.

[27]  Ivan W. Selesnick,et al.  Resonance-based signal decomposition: A new sparsity-enabled signal analysis method , 2011, Signal Process..

[28]  Patrick Flandrin,et al.  One or Two frequencies? The Synchrosqueezing Answers , 2011, Adv. Data Sci. Adapt. Anal..

[29]  Thomas Y. Hou,et al.  Adaptive Data Analysis via Sparse Time-Frequency Representation , 2011, Adv. Data Sci. Adapt. Anal..

[30]  I. Daubechies,et al.  Synchrosqueezed wavelet transforms: An empirical mode decomposition-like tool , 2011 .

[31]  Nelly Pustelnik,et al.  A multicomponent proximal algorithm for Empirical Mode Decomposition , 2012, 2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO).

[32]  Guo-Wei Wei,et al.  Mode Decomposition Evolution Equations , 2012, J. Sci. Comput..

[33]  Guo-Wei Wei,et al.  Iterative Filtering Decomposition Based on Local Spectral Evolution Kernel , 2012, J. Sci. Comput..

[34]  Jérôme Gilles,et al.  Empirical Wavelet Transform , 2013, IEEE Transactions on Signal Processing.

[35]  Yang Wang,et al.  On the convergence of iterative filtering empirical mode decomposition , 2013 .

[36]  Dominique Zosso,et al.  Variational Mode Decomposition , 2014, IEEE Transactions on Signal Processing.

[37]  Hau-Tieng Wu,et al.  Non‐parametric and adaptive modelling of dynamic periodicity and trend with heteroscedastic and dependent errors , 2014 .

[38]  Haomin Zhou,et al.  Multidimensional Iterative Filtering method for the decomposition of high-dimensional non-stationary signals , 2015, 1507.07173.