Representation of left-computable ε-random reals
暂无分享,去创建一个
[1] F. Stephan,et al. HIERARCHIES OF RANDOMNESS TESTS , 2006 .
[2] Cristian S. Calude. Information and Randomness: An Algorithmic Perspective , 1994 .
[3] Bakhadyr Khoussainov,et al. Recursively enumerable reals and Chaitin Ω numbers , 1998 .
[4] Ludwig Staiger,et al. Kolmogorov Complexity and Hausdorff Dimension , 1989, FCT.
[5] Gregory J. Chaitin,et al. Algorithmic Information Theory , 1987, IBM J. Res. Dev..
[6] Dimiter Skordev,et al. Characterization of the Computable Real Numbers by Means of Primitive Recursive Functions , 2000, CCA.
[7] Gregory J. Chaitin,et al. A recent technical report , 1974, SIGA.
[8] Cristian Claude,et al. Information and Randomness: An Algorithmic Perspective , 1994 .
[9] Kohtaro Tadaki,et al. A Generalization of Chaitin's Halting Probability \Omega and Halting Self-Similar Sets , 2002, ArXiv.
[10] Kohtaro Tadaki. Equivalent characterizations of partial randomness for a recursively enumerable real , 2008, ArXiv.
[11] P. Odifreddi. Classical recursion theory , 1989 .
[12] A. Nies. Computability and randomness , 2009 .
[13] Antonín Kucera,et al. Randomness and Recursive Enumerability , 2001, SIAM J. Comput..
[14] Cristian S. Calude,et al. On partial randomness , 2006, Ann. Pure Appl. Log..
[15] Ludwig Staiger,et al. A Tight Upper Bound on Kolmogorov Complexity and Uniformly Optimal Prediction , 1998, Theory of Computing Systems.
[16] Richard Kaye. Models of Peano arithmetic , 1991, Oxford logic guides.
[17] Cristian S. Calude,et al. Every Computably Enumerable Random Real Is Provably Computably Enumerable Random , 2009, Log. J. IGPL.