Representation of left-computable ε-random reals

In this paper we introduce the notion of @e-universal prefix-free Turing machine (@e is a computable real in (0,1]) and study its halting probability. The main result is the extension of the representability theorem for left-computable random reals to the case of @e-random reals: a real is left-computable @e-random iff it is the halting probability of an @e-universal prefix-free Turing machine. We also show that left-computable @e-random reals are provable @e-random in the Peano Arithmetic. The theory developed here parallels to a large extent the classical theory, but not completely. For example, random reals are Borel normal (in any base), but for @[email protected]?(0,1), some @e-random reals do not contain even arbitrarily long runs of 0s.

[1]  F. Stephan,et al.  HIERARCHIES OF RANDOMNESS TESTS , 2006 .

[2]  Cristian S. Calude Information and Randomness: An Algorithmic Perspective , 1994 .

[3]  Bakhadyr Khoussainov,et al.  Recursively enumerable reals and Chaitin Ω numbers , 1998 .

[4]  Ludwig Staiger,et al.  Kolmogorov Complexity and Hausdorff Dimension , 1989, FCT.

[5]  Gregory J. Chaitin,et al.  Algorithmic Information Theory , 1987, IBM J. Res. Dev..

[6]  Dimiter Skordev,et al.  Characterization of the Computable Real Numbers by Means of Primitive Recursive Functions , 2000, CCA.

[7]  Gregory J. Chaitin,et al.  A recent technical report , 1974, SIGA.

[8]  Cristian Claude,et al.  Information and Randomness: An Algorithmic Perspective , 1994 .

[9]  Kohtaro Tadaki,et al.  A Generalization of Chaitin's Halting Probability \Omega and Halting Self-Similar Sets , 2002, ArXiv.

[10]  Kohtaro Tadaki Equivalent characterizations of partial randomness for a recursively enumerable real , 2008, ArXiv.

[11]  P. Odifreddi Classical recursion theory , 1989 .

[12]  A. Nies Computability and randomness , 2009 .

[13]  Antonín Kucera,et al.  Randomness and Recursive Enumerability , 2001, SIAM J. Comput..

[14]  Cristian S. Calude,et al.  On partial randomness , 2006, Ann. Pure Appl. Log..

[15]  Ludwig Staiger,et al.  A Tight Upper Bound on Kolmogorov Complexity and Uniformly Optimal Prediction , 1998, Theory of Computing Systems.

[16]  Richard Kaye Models of Peano arithmetic , 1991, Oxford logic guides.

[17]  Cristian S. Calude,et al.  Every Computably Enumerable Random Real Is Provably Computably Enumerable Random , 2009, Log. J. IGPL.