The Therapeutic Effects of Curcumin-coated Gold Nanoparticle Against Leishmania Major Causative Agent of Zoonotic Cutaneous Leishmaniasis (ZCL): An In Vitro and In Vivo Study

[1]  A. Hashemi,et al.  Potential therapeutic effects of curcumin coated silver nanoparticle in the treatment of cutaneous leishmaniasis due to Leishmania major in-vitro and in a murine model , 2022, Journal of Drug Delivery Science and Technology.

[2]  P. Volf,et al.  Repeated Sand Fly Bites of Infected BALB/c Mice Enhance the Development of Leishmania Lesions , 2021, Frontiers in Tropical Diseases.

[3]  L. Vieira,et al.  Resistance Against Leishmania major Infection Depends on Microbiota-Guided Macrophage Activation , 2021, Frontiers in Immunology.

[4]  D. Lockwood,et al.  Clinical diversity and treatment results in Tegumentary Leishmaniasis: A European clinical report in 459 patients , 2021, PLoS neglected tropical diseases.

[5]  A. Hosseinzadeh Colagar,et al.  The Functional Roles of Curcumin on Astrocytes in Neurodegenerative Diseases , 2021, Neuroimmunomodulation.

[6]  R. Schwartz,et al.  Treatment options for leishmaniasis , 2021, Clinical and experimental dermatology.

[7]  A. Rezaeian,et al.  Plasmonic hyperthermia or radiofrequency electric field hyperthermia of cancerous cells through green-synthesized curcumin-coated gold nanoparticles , 2021, Lasers in Medical Science.

[8]  Fereshteh Koosha,et al.  Mesoporous silica coated gold nanorods: a multifunctional theranostic platform for radiotherapy and X-ray imaging , 2021, Journal of Porous Materials.

[9]  R. Dey,et al.  Leishmaniasis: the act of transmission. , 2021, Trends in parasitology.

[10]  S. Cojean,et al.  Intranasal vaccine from whole Leishmania donovani antigens provides protection and induces specific immune response against visceral leishmaniasis , 2021, PLoS neglected tropical diseases.

[11]  J. Timmermans,et al.  Miltefosine enhances infectivity of a miltefosine-resistant Leishmania infantum strain by attenuating its innate immune recognition , 2021, PLoS neglected tropical diseases.

[12]  A. Shariati,et al.  Antimicrobial Effects of Selenium Nanoparticles in Combination with Photodynamic Therapy Against Enterococcus faecalis Biofilm. , 2021, Photodiagnosis and photodynamic therapy.

[13]  M. Shirzadi,et al.  Human Cutaneous Leishmaniosis in Iran, Up to Date-2019 , 2021, Journal of arthropod-borne diseases.

[14]  R. Vahidi,et al.  Green Synthesis of Stable Silver Nanoparticles Using Teucrium polium Extract: In-vitro Anticancer Activity on NALM-6 , 2021 .

[15]  A. Shakeri-Zadeh,et al.  Investigating the in vitro photothermal effect of green synthesized apigenin‐coated gold nanoparticle on colorectal carcinoma , 2021, IET nanobiotechnology.

[16]  C. X. de Mello,et al.  Comparison of parasite load by qPCR and histopathological changes of inner and outer edge of ulcerated cutaneous lesions of cutaneous leishmaniasis , 2021, PloS one.

[17]  A. Badirzadeh,et al.  Anti-Leishmanial Activity of Artemisia persica, A. spicigera, and A. fragrance against Leishmania major , 2021, Iranian journal of parasitology.

[18]  A. Akbari,et al.  In-vitro investigation of green synthesized gold nanoparticle’s role in combined photodynamic and radiation therapy of cancerous cells , 2020, Advances in Natural Sciences: Nanoscience and Nanotechnology.

[19]  A. B. Reis,et al.  Recent advances and new strategies in Leishmaniasis diagnosis , 2020, Applied Microbiology and Biotechnology.

[20]  Gabriela Pessenda,et al.  Arginase and its mechanisms in Leishmania persistence , 2020, Parasite immunology.

[21]  N. Raja,et al.  Understanding the potential of bio-fabricated non-oxidative silver nanoparticles to eradicate Leishmania and plant bacterial pathogens , 2020, Applied Nanoscience.

[22]  A. Ingle,et al.  Curcumin and curcumin-loaded nanoparticles: antipathogenic and antiparasitic activities , 2020, Expert review of anti-infective therapy.

[23]  M. Obonyo,et al.  Burden and risk factors of cutaneous leishmaniasis in a peri-urban settlement in Kenya, 2016 , 2020, PloS one.

[24]  M. Nilforoushzadeh,et al.  Sambucus ebulus extract stimulates cellular responses in cutaneous leishmaniasis , 2019, Parasite immunology.

[25]  H. Rashedi,et al.  Molecular dynamic of curcumin/chitosan interaction using a computational molecular approach: Emphasis on biofilm reduction. , 2018, International journal of biological macromolecules.

[26]  O. Morenikeji,et al.  Antiplasmodial Activity and Toxicological Assessment of Curcumin PLGA-Encapsulated Nanoparticles , 2017, Front. Pharmacol..

[27]  S. Kharrazi,et al.  Curcumin coated gold nanoparticles: synthesis, characterization, cytotoxicity, antioxidant activity and its comparison with citrate coated gold nanoparticles , 2017 .

[28]  S. Kharrazi,et al.  Radio frequency hyperthermia of cancerous cells with gold nanoclusters: an in vitro investigation , 2017, Gold Bulletin.

[29]  K. Gupta,et al.  Nanotized Curcumin and Miltefosine, a Potential Combination for Treatment of Experimental Visceral Leishmaniasis , 2016, Antimicrobial Agents and Chemotherapy.

[30]  F. Zahedifard,et al.  Leishmaniasis and various immunotherapeutic approaches , 2016, Parasitology.

[31]  S. Puri,et al.  Immunoprotective effect of lentinan in combination with miltefosine on Leishmania‐infected J‐774A.1 macrophages , 2016, Parasite immunology.

[32]  R. Reithinger Global burden of cutaneous leishmaniasis. , 2016, The Lancet. Infectious diseases.

[33]  F. Golchinfar,et al.  Comparison of Gold Nanoparticle Conjugated Secondary Antibody with Non-Gold Secondary Antibody in an ELISA Kit Model. , 2015, Monoclonal antibodies in immunodiagnosis and immunotherapy.

[34]  Y. Gohar,et al.  In Vitro Activity of Curcumin and Silver Nanoparticles Against Blastocystis hominis , 2015 .

[35]  A. Kumari,et al.  Bactericidal Activity of Curcumin I Is Associated with Damaging of Bacterial Membrane , 2015, PloS one.

[36]  P. Couvreur,et al.  “Squalenoylcurcumin” Nanoassemblies as Water‐Dispersible Drug Candidates with Antileishmanial Activity , 2015, ChemMedChem.

[37]  M. Baldissera,et al.  Trypanocidal activity of free and nanoencapsulated curcumin on Trypanosoma evansi , 2014, Parasitology.

[38]  Wim E Hennink,et al.  Curcumin nanoformulations: a review of pharmaceutical properties and preclinical studies and clinical data related to cancer treatment. , 2014, Biomaterials.

[39]  J. Cano,et al.  Leishmaniasis Worldwide and Global Estimates of Its Incidence , 2012, PloS one.

[40]  Y. Gohar,et al.  Validity of silver, chitosan, and curcumin nanoparticles as anti-Giardia agents , 2012, Parasitology Research.

[41]  M. M. Rizvi,et al.  Oral delivery of curcumin bound to chitosan nanoparticles cured Plasmodium yoelii infected mice. , 2012, Biotechnology advances.

[42]  S. Patankar,et al.  Curcuminoids-loaded lipid nanoparticles: novel approach towards malaria treatment. , 2010, Colloids and surfaces. B, Biointerfaces.

[43]  D. Fernig,et al.  Determination of size and concentration of gold nanoparticles from UV-vis spectra. , 2007, Analytical chemistry.

[44]  M. Chatterjee,et al.  Development of a modified MTT assay for screening antimonial resistant field isolates of Indian visceral leishmaniasis. , 2005, Parasitology international.

[45]  Manzoor Ahmad,et al.  Biological effects of indigenous medicinal plants Curcuma longa and Alpinia galanga. , 2005, Fitoterapia.

[46]  D. Saleheen,et al.  Latent activity of curcumin against leishmaniasis in vitro. , 2002, Biological & pharmaceutical bulletin.

[47]  C. Franceschi,et al.  Apoptosis‐like, reversible changes in plasma membrane asymmetry and permeability, and transient modifications in mitochondrial membrane potential induced by curcumin in rat thymocytes , 1998, FEBS letters.

[48]  N. Ohta,et al.  Trypanocidal effects of curcumin in vitro. , 1998, Biological & pharmaceutical bulletin.

[49]  M. Boyd,et al.  New soluble-formazan assay for HIV-1 cytopathic effects: application to high-flux screening of synthetic and natural products for AIDS-antiviral activity. , 1989, Journal of the National Cancer Institute.