Thermal tides during the 2001 Martian global‐scale dust storm

The 2001 (Mars Year 25) global dust storm radically altered the dynamics of the Martian atmosphere. Using observations from the Thermal Emission Spectrometer onboard the Mars Global Surveyor spacecraft and MarsWRF general circulation model simulations, we examine the changes to thermal tides and planetary waves caused by the storm. We find that the extratropical diurnal migrating tide is dramatically enhanced during the storm, particularly in the southern hemisphere, reaching amplitudes of more than 20 K. The tropical diurnal migrating tide is weakened to almost undetectable levels. The diurnal Kelvin waves are also significantly weakened, particularly during the period of global expansion at Ls = 200°–210°. In contrast, the westward propagating diurnal wavenumber 2 tide strengthens to 4–8 K at altitudes above 30 km. The wavenumber 1 stationary wave reaches amplitudes of 10–12 K at 50°–70°N, far larger than is typically seen during this time of year. The phase of this stationary wave and the enhancement of the diurnal wavenumber 2 tide appear to be responses to the high-altitude westward propagating equatorial wavenumber 1 structure in dust mixing ratio observed during the storm in previous works. This work provides a global picture of dust storm wave dynamics that reveals the coupling between the tropics and high-latitude wave responses. We conclude that the zonal distribution of thermotidal forcing from atmospheric aerosol concentration is as important to understanding the atmospheric wave response as the total global mean aerosol optical depth.

[1]  Michael D. Smith,et al.  Traveling waves in the Northern Hemisphere of Mars , 2002 .

[2]  Barney J. Conrath,et al.  Thermal structure of the Martian atmosphere during the dissipation of the dust storm of 1971 , 1975 .

[3]  J. Schofield,et al.  Thermal Tides in the Martian Middle Atmosphere as Seen by the Mars Climate Sounder. , 2009, Journal of geophysical research.

[4]  John C. Pearl,et al.  Thermal Emission Spectrometer results: Mars atmospheric thermal structure and aerosol distribution , 2001 .

[5]  Irene M. Moroz,et al.  Transient teleconnection event at the onset of a planet-encircling dust storm on Mars , 2009 .

[6]  J. Forbes,et al.  Diurnal Kelvin wave in the atmosphere of Mars: Towards an understanding of ’stationary’ density structures observed by the MGS accelerometer , 2000 .

[7]  C. Newman,et al.  The impact of a realistic vertical dust distribution on the simulation of the Martian General Circulation , 2013 .

[8]  F. Montmessin,et al.  Observations of thermal tides in the middle atmosphere of Mars by the SPICAM instrument , 2011 .

[9]  M. J. Wolff,et al.  An intercomparison of ground-based millimeter, MGS TES, and Viking atmospheric temperature measurements: Seasonal and interannual variability of temperatures and dust loading in the global Mars atmosphere , 2000 .

[10]  Simulated planetary wave‐tide interactions in the atmosphere of Mars , 2011 .

[11]  R. Wilson,et al.  Thermal tides in an assimilation of three years of Thermal Emission Spectromenter data from Mars Global Surveyor , 2008 .

[12]  D. Waugh,et al.  Observations of planetary waves and nonmigrating tides by the Mars Climate Sounder , 2012 .

[13]  R. Zurek Free and forced modes in the Martian atmosphere , 1988 .

[14]  R. J. Wilson Evidence for diurnal period Kelvin waves in the Martian atmosphere from Mars Global Surveyor TES data , 2000 .

[15]  Michael D. Smith Spacecraft Observations of the Martian Atmosphere , 2008 .

[16]  Richard W. Zurek,et al.  Thermal tides and Martian dust storms: Direct evidence for coupling , 1979 .

[17]  Richard W. Zurek,et al.  The martian dust cycle. , 1992 .

[18]  Andrew P. Ingersoll,et al.  Cyclones, tides, and the origin of a cross‐equatorial dust storm on Mars , 2003 .

[19]  Stephen R. Lewis,et al.  Influence of water ice clouds on Martian tropical atmospheric temperatures , 2008 .

[20]  R. Wilson,et al.  Teleconnection in the martian atmosphere during the 2001 planet-encircling dust storm , 2008 .

[21]  Michael D. Smith Interannual variability in TES atmospheric observations of Mars during 1999–2003 , 2004 .

[22]  Stephen R. Lewis,et al.  Atmospheric tides in a Mars general circulation model with data assimilation , 2005 .

[23]  D. Waugh,et al.  High‐altitude dust layers on Mars: Observations with the Thermal Emission Spectrometer , 2013 .

[24]  Bruce A. Cantor,et al.  MOC observations of the 2001 Mars planet-encircling dust storm , 2007 .

[25]  John C. Pearl,et al.  Thermal Emission Spectrometer Observations of Martian Planet-Encircling Dust Storm 2001A , 2001 .

[26]  M. Richardson,et al.  The impact of resolution on the dynamics of the martian global atmosphere: Varying resolution studies with the MarsWRF GCM , 2012 .

[27]  Pascal Rannou,et al.  Origin and role of water ice clouds in the Martian water cycle as inferred from a general circulation model , 2004 .

[28]  Mark T. Lemmon,et al.  Constraints on dust aerosols from the Mars Exploration Rovers using MGS overflights and Mini‐TES , 2006 .

[29]  M. Richardson,et al.  The Martian Atmosphere During the Viking Mission, I Infrared Measurements of Atmospheric Temperatures Revisited , 2000 .

[30]  Mark I. Richardson,et al.  Observations of the initiation and evolution of the 2001 Mars global dust storm , 2005 .

[31]  J. Murphy,et al.  Mars' surface pressure tides and their behavior during global dust storms , 1998 .

[32]  R. Zurek,et al.  Thermal tides in the dusty martian atmosphere: a verification of theory. , 1981, Science.

[33]  M. Richardson,et al.  An assessment of the global, seasonal, and interannual spacecraft record of Martian climate in the thermal infrared , 2002 .

[34]  P. Gierasch,et al.  Traveling waves in the martian atmosphere from MGS TES Nadir data , 2004 .

[35]  Robert M. Haberle,et al.  Some effects of global dust storms on the atmospheric circulation of Mars , 1980 .

[36]  First detection of wave interactions in the middle atmosphere of Mars , 2011 .

[37]  Mark I. Richardson,et al.  PlanetWRF: A general purpose, local to global numerical model for planetary atmospheric and climate dynamics , 2007 .

[38]  M. Salby,et al.  Seasonal Amplification of the 2-Day Wave: Relationship between Normal Mode and Instability , 2001 .

[39]  Richard J. Wilson,et al.  Radio occultation measurements of forced atmospheric waves on Mars , 2001 .

[40]  David P. Hinson,et al.  Validation of martian meteorological data assimilation for MGS/TES using radio occultation measurements , 2006 .

[41]  C. Leovy Observations of Martian Tides Over Two Annual Cycles , 1981 .

[42]  Bruce A. Cantor,et al.  Extension of atmospheric dust loading to high altitudes during the 2001 Mars dust storm: MGS TES limb observations , 2010 .

[43]  R. John Wilson,et al.  Evidence for nonmigrating thermal tides in the Mars upper atmosphere from the Mars Global Surveyor Accelerometer Experiment , 2002 .

[44]  A. Ingersoll,et al.  Simulation of spontaneous and variable global dust storms with the GFDL Mars GCM , 2006 .

[45]  Kevin Hamilton,et al.  Comprehensive Model Simulation of Thermal Tides in the Martian Atmosphere , 1996 .

[46]  R. Wilson,et al.  Forced waves in the martian atmosphere from MGS TES nadir data , 2003 .