REPRESENTATION THEORY BASED ON RELATIVIZED SET ALGEBRAS ORIGINATING FROM LOGIC
暂无分享,去创建一个
[1] Robert Goldblatt,et al. Relativised Quantification: Some Canonical Varieties of Sequence-Set Algebras , 1998, J. Symb. Log..
[2] Ian M. Hodkinson,et al. Complete representations in algebraic logic , 1997, Journal of Symbolic Logic.
[3] J. DONALD MONK,et al. An Introduction to Cylindric Set Algebras , 2000, Log. J. IGPL.
[4] I. Németi,et al. Cylindric-like algebras and algebraic logic , 2013 .
[6] Maarten Marx,et al. Undecidable Relativizations of Algebras of Relations , 1999, J. Symb. Log..
[7] Johan van Benthem. Guards, Bounds, and Generalized Semantics , 2005, J. Log. Lang. Inf..
[8] D. Monk,et al. Representation theory for polyadic algebras , 1963 .
[9] M. Ferenczi. On diagonals in representable cylindric algebras , 1999 .
[10] R. Maddux. Some varieties containing relation algebras , 1982 .
[11] Miklós Ferenczi. Existence of partial transposition means representability in cylindric algebras , 2011, Math. Log. Q..
[12] M. Ferenczi,et al. On inducing homomorphisms between relation set algebras , 1990 .
[13] John L. Bell,et al. A course in mathematical logic , 1977 .
[14] Johan van Benthem,et al. Modal Foundations for Predicate Logic , 1997, Log. J. IGPL.
[15] Ian M. Hodkinson,et al. Step by step – Building representations in algebraic logic , 1997, Journal of Symbolic Logic.
[16] Charles Pinter,et al. Cylindric algebras and algebras of substitutions , 1973 .
[17] I. Hodkinson,et al. Relation Algebras by Games , 2002 .
[18] Á. Kurucz. Comparing decision problem for various paradigms of algebraic logic , 2002 .
[19] T. Gergely,et al. On universal algebraic constructions of logics , 1977 .
[20] Miklós Ferenczi. A New Representation Theory: Representing Cylindric-like Algebras by Relativized Set Algebras , 2013 .
[21] T. Ahmed. Some results about neat reducts , 2010 .
[22] Johan van Benthem,et al. Modal Languages and Bounded Fragments of Predicate Logic , 1998, J. Philos. Log..
[23] Ildikó Sain,et al. On the Search for a Finitizable Algebraization of First Order Logic , 2000, Log. J. IGPL.
[24] A. Tarski,et al. Cylindric Algebras. Part II , 1988 .
[25] Miklós Ferenczi,et al. On representability of neatly embeddable cylindric algebras , 2000, J. Appl. Non Class. Logics.
[26] Miklós Ferenczi. Non-standard Stochastics with a First Order Algebraization , 2010, Stud Logica.
[27] Miklós Ferenczi,et al. On Conservative Extensions in Logics with Infinitary Predicates , 2009, Stud Logica.
[28] Hajnal Andréka,et al. Complexity of Equations Valid in Algebras of Relations: Part II: Finite Axiomatizations , 1997, Ann. Pure Appl. Log..
[29] István Németi,et al. Algebraization of quantifier logics, an introductory overview , 1991, Stud Logica.
[30] Miklós Ferenczi,et al. Finitary Polyadic Algebras from Cylindric Algebras , 2007, Stud Logica.
[31] H. Andréka. A FINITE AXIOMATIZATION OF LOCALLY SQUARE CYLINDRIC-RELATIVIZED SET ALGEBRAS , 2001 .
[32] Roger D. Maddux,et al. Canonical relativized cylindric set algebras , 1989 .
[33] M. Ferenczi. The polyadic generalization of the Boolean axiomatization of fields of sets , 2012 .
[34] Miklós Ferenczi. On Cylindric Algebras Satisfying Merry-go-round Properties , 2007, Log. J. IGPL.
[35] Hajnal Andréka,et al. A Stone-type representation theorem for algebras of relations of higher rank , 1988 .
[36] M. Ferenczi. Representations of polyadic-like equality algebras , 2011, 1104.1286.
[37] P. Halmos. Algebraic logic. IV. Equality in polyadic algebras , 1957 .