Fractional antiferromagnetic skyrmion lattice induced by anisotropic couplings

[1]  S. Blugel,et al.  Magnetic hopfions in solids , 2019, APL Materials.

[2]  Y. Tokura,et al.  Nanometric square skyrmion lattice in a centrosymmetric tetragonal magnet , 2020, Nature Nanotechnology.

[3]  K. Penc,et al.  Affine lattice construction of spiral surfaces in frustrated Heisenberg models , 2019, Physical Review B.

[4]  Jiang Xiao,et al.  Topological spin Hall effects and tunable skyrmion Hall effects in uniaxial antiferromagnetic insulators , 2019, Physical Review B.

[5]  A. Rosch,et al.  Quantum Skyrmions in Frustrated Ferromagnets , 2019, Physical Review X.

[6]  D. Loss,et al.  Topological Magnons and Edge States in Antiferromagnetic Skyrmion Crystals. , 2018, Physical review letters.

[7]  Y. Tokura,et al.  Skyrmion phase and competing magnetic orders on a breathing kagomé lattice , 2018, Nature Communications.

[8]  D. A. Sokolov,et al.  Metamagnetic texture in a polar antiferromagnet , 2018, Nature Physics.

[9]  Y. Tokura,et al.  Skyrmion lattice with a giant topological Hall effect in a frustrated triangular-lattice magnet , 2018, Science.

[10]  M. Titov,et al.  Stability and lifetime of antiferromagnetic skyrmions , 2017, Physical Review B.

[11]  Y. Tokura,et al.  Transformation between meron and skyrmion topological spin textures in a chiral magnet , 2018, Nature.

[12]  H. Jeschke,et al.  Stability of the spiral spin liquid in MnSc2S4 , 2018, Physical Review B.

[13]  Alexander Mook,et al.  Antiferromagnetic skyrmion crystals: Generation, topological Hall, and topological spin Hall effect , 2017, 1707.05267.

[14]  M. Stone,et al.  Spin order and dynamics in the diamond-lattice Heisenberg antiferromagnets CuRh 2 O 4 and CoRh 2 O 4 , 2017, 1706.05881.

[15]  A. Fert,et al.  Magnetic skyrmions: advances in physics and potential applications , 2017 .

[16]  P. Sutcliffe,et al.  Skyrmion Knots in Frustrated Magnets. , 2017, Physical review letters.

[17]  S. Trebst,et al.  Classical spin spirals in frustrated magnets from free-fermion band topology , 2017, 1705.04073.

[18]  Y. Motome,et al.  Effective bilinear-biquadratic model for noncoplanar ordering in itinerant magnets , 2017, 1703.07690.

[19]  Xiao-Gang Wen,et al.  Colloquium : Zoo of quantum-topological phases of matter , 2016, 1610.03911.

[20]  P. Böni,et al.  Optimizing the triple-axis spectrometer PANDA at the MLZ for small samples and complex sample environment conditions , 2016 .

[21]  H. Zhou,et al.  Revisiting the ground state of CoAl 2 O 4 : Comparison to the conventional antiferromagnet MnAl 2 O 4 , 2016, 1607.05309.

[22]  J. White,et al.  Robust metastable skyrmions and their triangular-square lattice structural transition in a high-temperature chiral magnet. , 2016, Nature materials.

[23]  G. Tucker,et al.  Spiral spin-liquid and the emergence of a vortex-like state in MnSc2S4 , 2016, Nature Physics.

[24]  A. S. Nunez,et al.  Topological spin waves in the atomic-scale magnetic skyrmion crystal , 2015, 1511.08244.

[25]  J. Wunderlich,et al.  Antiferromagnetic spintronics. , 2015, Nature nanotechnology.

[26]  J. Barker,et al.  Static and Dynamical Properties of Antiferromagnetic Skyrmions in the Presence of Applied Current and Temperature. , 2015, Physical review letters.

[27]  Yan Zhou,et al.  Antiferromagnetic Skyrmion: Stability, Creation and Manipulation , 2015, Scientific Reports.

[28]  A. Schneidewind,et al.  PANDA: Cold three axes spectrometer , 2015 .

[29]  D. Cabra,et al.  Three-sublattice skyrmion crystal in the antiferromagnetic triangular lattice , 2015, 1507.05109.

[30]  P. Svoboda,et al.  ThALES—Three Axis Low Energy Spectroscopy for highly correlated electron systems , 2015 .

[31]  J. White,et al.  N\'eel-type Skyrmion Lattice with Confined Orientation in the Polar Magnetic Semiconductor GaV$_4$S$_8$ , 2015, 1502.08049.

[32]  M. Mostovoy,et al.  Multiply periodic states and isolated skyrmions in an anisotropic frustrated magnet , 2015, Nature Communications.

[33]  A. Saxena,et al.  Skyrmion fractionalization and merons in chiral magnets with easy-plane anisotropy , 2014, 1406.1422.

[34]  B. Lake,et al.  Linear spin wave theory for single-Q incommensurate magnetic structures , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[35]  C. Batista,et al.  Magnetic Vortex Crystals in Frustrated Mott Insulator , 2013, 1303.0012.

[36]  Y. Tokura,et al.  Topological properties and dynamics of magnetic skyrmions. , 2013, Nature nanotechnology.

[37]  C. Pfleiderer,et al.  Unwinding of a Skyrmion Lattice by Magnetic Monopoles , 2013, Science.

[38]  D. Loss,et al.  Magnetic texture-induced thermal Hall effects , 2012, 1208.1646.

[39]  J. White,et al.  Electric field control of the skyrmion lattice in Cu2OSeO3 , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[40]  Y. Motome,et al.  Hidden multiple-spin interactions as an origin of spin scalar chiral order in frustrated Kondo lattice models. , 2012, Physical review letters.

[41]  Y. Tokura,et al.  Skyrmion flow near room temperature in an ultralow current density , 2012, Nature Communications.

[42]  H. Kawamura,et al.  Multiple-q states and the Skyrmion lattice of the triangular-lattice Heisenberg antiferromagnet under magnetic fields. , 2011, Physical review letters.

[43]  A. Honecker,et al.  Magnetic exchange interactions in BaMn2As2: A case study of the J1-J2-Jc Heisenberg model , 2011, 1106.0206.

[44]  A. Loidl,et al.  Spin liquid in a single crystal of the frustrated diamond lattice antiferromagnet CoAl2O4 , 2011, 1103.5799.

[45]  P. Böni,et al.  Spin Transfer Torques in MnSi at Ultralow Current Densities , 2010, Science.

[46]  Y. Tokura,et al.  Real-space observation of a two-dimensional skyrmion crystal , 2010, Nature.

[47]  L. Balents Spin liquids in frustrated magnets , 2010, Nature.

[48]  P. Böni,et al.  Skyrmion Lattice in a Chiral Magnet , 2009, Science.

[49]  L. Balents,et al.  Theory of the ordered phase in A -site antiferromagnetic spinels , 2008, 0808.3010.

[50]  Leon Balents,et al.  Order-by-disorder and spiral spin-liquid in frustrated diamond-lattice antiferromagnets , 2006, cond-mat/0612001.

[51]  C. Pfleiderer,et al.  Spontaneous skyrmion ground states in magnetic metals , 2006, Nature.

[52]  A. Loidl,et al.  Spin and orbital frustration in MnSc2S4 and FeSc2S4. , 2004, Physical review letters.

[53]  渡辺 宏 On the ground level splitting of Mn[++] and Fe[+++] in nearly cubic crystalline field , 1961 .