Annealing-free efficient vacuum-deposited planar perovskite solar cells with evaporated fullerenes as electron-selective layers

Abstract We present efficient metal oxide-free and annealing-free planar perovskite solar cells with the regular cell structure using vacuum-deposited fullerenes C 60 and C 70 as the electron-selective layers and vacuum-processed perovskites as the light absorbers. The devices with an ultrathin C 60 layer (5.5 nm) yielded an average power conversion efficiency of 14.3% and a maximum efficiency of 15.7%. The best-performing cell produced a steady-state efficiency of 14.6%. The high performance is attributed to the efficient blocking of holes and extraction of electrons by C 60 due to a favorable energy level alignment between the C 60 and the fluorine-doped tin oxide electrodes. With the realization of efficient cells, the annealing-free vacuum deposition of perovskite absorbers and C 60 or C 70 electron-selective layers and intermediate layers demonstrates its power for fabricating all-perovskite tandem solar cells.

[1]  O. Gunawan,et al.  Perovskite-kesterite monolithic tandem solar cells with high open-circuit voltage , 2014 .

[2]  Garry Rumbles,et al.  Heterojunction modification for highly efficient organic-inorganic perovskite solar cells. , 2014, ACS nano.

[3]  Seong Sik Shin,et al.  Fabrication of metal-oxide-free CH3NH3PbI3 perovskite solar cells processed at low temperature , 2015 .

[4]  Konrad Wojciechowski,et al.  C60 as an Efficient n-Type Compact Layer in Perovskite Solar Cells. , 2015, The journal of physical chemistry letters.

[5]  Laura M. Herz,et al.  Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber , 2013, Science.

[6]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[7]  Sang Il Seok,et al.  High-performance photovoltaic perovskite layers fabricated through intramolecular exchange , 2015, Science.

[8]  F. So,et al.  High‐Efficiency Solution‐Processed Planar Perovskite Solar Cells with a Polymer Hole Transport Layer , 2015 .

[9]  Yang Yang,et al.  Interface engineering of highly efficient perovskite solar cells , 2014, Science.

[10]  Alex K.-Y. Jen,et al.  High-performance perovskite-polymer hybrid solar cells via electronic coupling with fullerene monolayers. , 2013, Nano letters.

[11]  Kwanghee Lee,et al.  Efficient planar-heterojunction perovskite solar cells achieved via interfacial modification of a sol–gel ZnO electron collection layer , 2014 .

[12]  Paul L. Burn,et al.  Electro-optics of perovskite solar cells , 2014, Nature Photonics.

[13]  Alberto Salleo,et al.  Semi-transparent perovskite solar cells for tandems with silicon and CIGS , 2015 .

[14]  V. Mihailetchi,et al.  Space-charge limited photocurrent. , 2005, Physical review letters.

[15]  Tingting Shi,et al.  Unique Properties of Halide Perovskites as Possible Origins of the Superior Solar Cell Performance , 2014, Advanced materials.

[16]  Henk J. Bolink,et al.  Perovskite solar cells employing organic charge-transport layers , 2013, Nature Photonics.

[17]  Yanfa Yan,et al.  Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber , 2014 .

[18]  Shenghao Wang,et al.  Fabrication of semi-transparent perovskite films with centimeter-scale superior uniformity by the hybrid deposition method , 2014 .

[19]  Qingfeng Dong,et al.  Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers , 2014 .

[20]  T. Dittrich,et al.  Formation of a passivating CH3NH3PbI3/PbI2 interface during moderate heating of CH3NH3PbI3 layers , 2013 .

[21]  Clemens Burda,et al.  Femtosecond time-resolved transient absorption spectroscopy of CH3NH3PbI3 perovskite films: evidence for passivation effect of PbI2. , 2014, Journal of the American Chemical Society.

[22]  Kai Zhu,et al.  Efficient planar perovskite solar cells based on 1.8 eV band gap CH3NH3PbI2Br nanosheets via thermal decomposition. , 2014, Journal of the American Chemical Society.

[23]  Thomas Feurer,et al.  High-Efficiency Polycrystalline Thin Film Tandem Solar Cells. , 2015, The journal of physical chemistry letters.

[24]  Yixin Zhao,et al.  Controllable Sequential Deposition of Planar CH₃NH₃PbI₃ Perovskite Films via Adjustable Volume Expansion. , 2015, Nano letters.

[25]  Kai Zhu,et al.  CH3NH3Cl-Assisted One-Step Solution Growth of CH3NH3PbI3: Structure, Charge-Carrier Dynamics, and Photovoltaic Properties of Perovskite Solar Cells , 2014 .

[26]  N. Park,et al.  Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9% , 2012, Scientific Reports.

[27]  Anders Hagfeldt,et al.  Effect of Different Hole Transport Materials on Recombination in CH3NH3PbI3 Perovskite-Sensitized Mesoscopic Solar Cells. , 2013, The journal of physical chemistry letters.

[28]  Ming He,et al.  High efficiency perovskite solar cells: from complex nanostructure to planar heterojunction , 2014 .

[29]  M. Grätzel,et al.  Title: Long-Range Balanced Electron and Hole Transport Lengths in Organic-Inorganic CH3NH3PbI3 , 2017 .

[30]  Gary Hodes,et al.  Perovskite-Based Solar Cells , 2013, Science.

[31]  Alex K.-Y. Jen,et al.  Roles of Fullerene‐Based Interlayers in Enhancing the Performance of Organometal Perovskite Thin‐Film Solar Cells , 2015 .

[32]  Valentin D. Mihailetchi,et al.  Origin of the light intensity dependence of the short-circuit current of polymer/fullerene solar cells , 2005 .

[33]  Shenghao Wang,et al.  High performance perovskite solar cells by hybrid chemical vapor deposition , 2014 .

[34]  Nakita K. Noel,et al.  Anomalous Hysteresis in Perovskite Solar Cells. , 2014, The journal of physical chemistry letters.

[35]  Qi Chen,et al.  Integrated perovskite/bulk-heterojunction toward efficient solar cells. , 2015, Nano letters.

[36]  Qi Chen,et al.  Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells. , 2014, Nano letters.

[37]  H. Tao,et al.  Efficient hole-blocking layer-free planar halide perovskite thin-film solar cells , 2015, Nature Communications.

[38]  Guo-Qiang Lo,et al.  Efficient tandem organic solar cells with an Al/MoO3 intermediate layer , 2008 .

[39]  Rui Zhu,et al.  Engineering of electron-selective contact for perovskite solar cells with efficiency exceeding 15%. , 2014, ACS nano.

[40]  Fujun Zhang,et al.  Inverted small molecule organic solar cells with Ca modified ITO as cathode and MoO3 modified Ag as anode , 2010 .

[41]  S. Hsiao,et al.  Efficient and Uniform Planar‐Type Perovskite Solar Cells by Simple Sequential Vacuum Deposition , 2014, Advanced materials.

[42]  Timothy L. Kelly,et al.  Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques , 2013, Nature Photonics.

[43]  Weihua Tang,et al.  Efficient bulk heterojunction solar cells with poly[2,7-(9,9-dihexylfluorene)-alt-bithiophene] and 6,6-phenyl C61 butyric acid methyl ester blends and their application in tandem cells. , 2010, ACS applied materials & interfaces.

[44]  Hongwei Lei,et al.  Low-temperature solution-processed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells. , 2015, Journal of the American Chemical Society.

[45]  J. Bisquert The Swift Surge of Perovskite Photovoltaics , 2013 .

[46]  Xiao Wei Sun,et al.  Optimization of inverted tandem organic solar cells , 2011 .

[47]  Henry J. Snaith,et al.  Efficient planar heterojunction perovskite solar cells by vapour deposition , 2013, Nature.

[48]  Henry J Snaith,et al.  Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates , 2013, Nature Communications.

[49]  Stephen R. Forrest,et al.  Small molecular weight organic thin-film photodetectors and solar cells , 2003 .

[50]  M. Nazeeruddin,et al.  Metal‐Oxide‐Free Methylammonium Lead Iodide Perovskite‐Based Solar Cells: the Influence of Organic Charge Transport Layers , 2014 .