Formalizing functional analysis structures in dependent type theory

This paper discusses the design of a hierarchy of structures which combine linear algebra with concepts related to limits, like topol-ogy and norms, in dependent type theory. This hierarchy is the backbone of a new library of formalized classical analysis, for the Coq proof assistant. It extends the Mathematical Components library, geared towards algebra, with topics in analysis. This marriage arouses issues of a more general nature, related to the inheritance of poorer structures from richer ones. We present and discuss a solution, coined forgetful inheritance, based on packed classes and unification hints.

[1]  Andrea Asperti,et al.  Hints in Unification , 2009, TPHOLs.

[2]  Andrée Bastiani,et al.  Théorie des ensembles , 1970 .

[3]  Jeremy Avigad,et al.  A Machine-Checked Proof of the Odd Order Theorem , 2013, ITP.

[4]  Kazuhiko Sakaguchi,et al.  Validating Mathematical Structures , 2020, IJCAR.

[5]  Assia Mahboubi,et al.  Packaging Mathematical Structures , 2009, TPHOLs.

[6]  Amokrane Saibi Outils Génériques de Modélisation et de Démonstration pour la Formalisation des Mathématiques en Théorie des Types. Application à la Théorie des Catégories. , 1999 .

[7]  Reynald Affeldt,et al.  Formalization Techniques for Asymptotic Reasoning in Classical Analysis , 2018, J. Formaliz. Reason..

[8]  Bas Spitters,et al.  Type classes for mathematics in type theory† , 2011, Mathematical Structures in Computer Science.

[9]  Lawrence Charles Paulson,et al.  Isabelle/HOL: A Proof Assistant for Higher-Order Logic , 2002 .

[10]  Nicholas Bourbaki,et al.  The Architecture of Mathematics , 1950 .

[11]  Matthieu Sozeau,et al.  First-Class Type Classes , 2008, TPHOLs.

[12]  Sebastian Ullrich,et al.  Tabled Typeclass Resolution , 2020, ArXiv.

[13]  Kevin Buzzard,et al.  Formalising perfectoid spaces , 2019, CPP.

[14]  Andrej Bauer,et al.  The HoTT library: a formalization of homotopy type theory in Coq , 2016, CPP.

[15]  The mathlib Community The lean mathematical library , 2020, CPP.

[16]  de Ng Dick Bruijn,et al.  Telescopic Mappings in Typed Lambda Calculus , 1991, Inf. Comput..

[17]  Thierry Coquand,et al.  Inductively defined types , 1988, Conference on Computer Logic.

[18]  Ioana Pasca,et al.  Canonical Big Operators , 2008, TPHOLs.

[19]  Guillaume Melquiond,et al.  Coquelicot: A User-Friendly Library of Real Analysis for Coq , 2015, Math. Comput. Sci..

[20]  Enrico Tassi,et al.  Canonical Structures for the Working Coq User , 2013, ITP.