Formalizing functional analysis structures in dependent type theory
暂无分享,去创建一个
Reynald Affeldt | Assia Mahboubi | Cyril Cohen | Damien Rouhling | Kazuhiko Sakaguchi | Marie Kerjean
[1] Andrea Asperti,et al. Hints in Unification , 2009, TPHOLs.
[2] Andrée Bastiani,et al. Théorie des ensembles , 1970 .
[3] Jeremy Avigad,et al. A Machine-Checked Proof of the Odd Order Theorem , 2013, ITP.
[4] Kazuhiko Sakaguchi,et al. Validating Mathematical Structures , 2020, IJCAR.
[5] Assia Mahboubi,et al. Packaging Mathematical Structures , 2009, TPHOLs.
[6] Amokrane Saibi. Outils Génériques de Modélisation et de Démonstration pour la Formalisation des Mathématiques en Théorie des Types. Application à la Théorie des Catégories. , 1999 .
[7] Reynald Affeldt,et al. Formalization Techniques for Asymptotic Reasoning in Classical Analysis , 2018, J. Formaliz. Reason..
[8] Bas Spitters,et al. Type classes for mathematics in type theory† , 2011, Mathematical Structures in Computer Science.
[9] Lawrence Charles Paulson,et al. Isabelle/HOL: A Proof Assistant for Higher-Order Logic , 2002 .
[10] Nicholas Bourbaki,et al. The Architecture of Mathematics , 1950 .
[11] Matthieu Sozeau,et al. First-Class Type Classes , 2008, TPHOLs.
[12] Sebastian Ullrich,et al. Tabled Typeclass Resolution , 2020, ArXiv.
[13] Kevin Buzzard,et al. Formalising perfectoid spaces , 2019, CPP.
[14] Andrej Bauer,et al. The HoTT library: a formalization of homotopy type theory in Coq , 2016, CPP.
[15] The mathlib Community. The lean mathematical library , 2020, CPP.
[16] de Ng Dick Bruijn,et al. Telescopic Mappings in Typed Lambda Calculus , 1991, Inf. Comput..
[17] Thierry Coquand,et al. Inductively defined types , 1988, Conference on Computer Logic.
[18] Ioana Pasca,et al. Canonical Big Operators , 2008, TPHOLs.
[19] Guillaume Melquiond,et al. Coquelicot: A User-Friendly Library of Real Analysis for Coq , 2015, Math. Comput. Sci..
[20] Enrico Tassi,et al. Canonical Structures for the Working Coq User , 2013, ITP.