Dual isotype expressing B cells [κ(+)/λ(+)] arise during the ontogeny of B cells in the bone marrow of normal nontransgenic mice

[1]  B. Diamond,et al.  Receptor editing in peripheral B cell tolerance. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[2]  Evelyn Camon,et al.  The EMBL Nucleotide Sequence Database , 2000, Nucleic Acids Res..

[3]  M. Wabl,et al.  Autoreactivity and allelic inclusion in a B cell nuclear transfer mouse , 2004, Nature Immunology.

[4]  Yoram Louzoun,et al.  Editing Anti-DNA B Cells by Vλx , 2004, The Journal of experimental medicine.

[5]  M. Nussenzweig,et al.  Surrogate Light Chain Expressing Human Peripheral B Cells Produce Self-reactive Antibodies , 2004, The Journal of experimental medicine.

[6]  Gregory D. Schuler,et al.  Database resources of the National Center for Biotechnology Information: update , 2004, Nucleic acids research.

[7]  M. Weigert,et al.  Anti–DNA B Cells in MRL/lpr Mice Show Altered Differentiation and Editing Pattern , 2002, The Journal of experimental medicine.

[8]  Shoham Shivtiel,et al.  Impaired Light Chain Allelic Exclusion and Lack of Positive Selection in Immature B Cells Expressing Incompetent Receptor Deficient of CD191 , 2002, The Journal of Immunology.

[9]  J. Kearney,et al.  Marginal-zone B cells , 2002, Nature Reviews Immunology.

[10]  M. Weigert,et al.  Autoreactive B Cells in the Marginal Zone that Express Dual Receptors , 2002, The Journal of experimental medicine.

[11]  C. Janeway,et al.  Dual receptor T cells extend the immune repertoire for foreign antigens , 2002, Nature Immunology.

[12]  M. Radic,et al.  Editors and editing of anti-DNA receptors. , 2001, Immunity.

[13]  K. Rajewsky,et al.  Contribution of Receptor Editing to the Antibody Repertoire , 2001, Science.

[14]  R. Berland,et al.  Cutting Edge Commentary: Origins of B-1 Cells1 2 , 2001, The Journal of Immunology.

[15]  R. Hardy,et al.  B cell development pathways. , 2001, Annual review of immunology.

[16]  George Johnson,et al.  Kabat Database and its applications: future directions , 2001, Nucleic Acids Res..

[17]  B. Stollar,et al.  Human immunoglobulin variable region gene analysis by single cell RT-PCR. , 2000, Journal of immunological methods.

[18]  W. Dubois,et al.  Double producers of kappa and lambda define a subset of B cells in mouse plasmacytomas. , 2000, Molecular immunology.

[19]  A. Lustig,et al.  Autoreactive B Cells Escape Clonal Deletion by Expressing Multiple Antigen Receptors1 , 2000, The Journal of Immunology.

[20]  J. Kearney,et al.  Positive selection from newly formed to marginal zone B cells depends on the rate of clonal production, CD19, and btk. , 2000, Immunity.

[21]  R. Zinkernagel,et al.  Control of early viral and bacterial distribution and disease by natural antibodies. , 1999, Science.

[22]  Xiaowei Wang,et al.  Immunoglobulin VH gene expression in human aging. , 1999, Clinical immunology.

[23]  D. Nemazee,et al.  Distinct Signal Thresholds for the Unique Antigen Receptor–Linked Gene Expression Programs in Mature and Immature B Cells , 1999, The Journal of experimental medicine.

[24]  T. Honjo,et al.  Expression Levels of B Cell Surface Immunoglobulin Regulate Efficiency of Allelic Exclusion and Size of Autoreactive B-1 Cell Compartment , 1999, The Journal of experimental medicine.

[25]  Hans G. Zachau,et al.  Appendix to the report by R. Thiebe et al. Characteristics of the immunoglobulin Vκ genes, pseudogenes, relics and orphons in the mouse genome , 1999 .

[26]  H. Zachau,et al.  The variable genes and gene families of the mouse immunoglobulin κ locus , 1999 .

[27]  J. Kearney,et al.  Increased junctional diversity in fetal B cells results in a loss of protective anti-phosphorylcholine antibodies in adult mice. , 1999, Immunity.

[28]  A. Kelso,et al.  Single-cell analysis by RT-PCR reveals differential expression of multiple type 1 and 2 cytokine genes among cells within polarized CD4+ T cell populations. , 1999, International immunology.

[29]  Jianzhu Chen,et al.  A Critical Role of Natural Immunoglobulin M in Immediate Defense Against Systemic Bacterial Infection , 1998, The Journal of experimental medicine.

[30]  R. Hardy,et al.  Regulation of Anti-DNA B Cells in Recombination-activating Gene–deficient Mice , 1998, The Journal of experimental medicine.

[31]  J. Banchereau,et al.  Antigen Receptor Engagement Turns off the V(D)J Recombination Machinery in Human Tonsil B Cells , 1998, The Journal of experimental medicine.

[32]  S. Nishikawa,et al.  Expression of Recombination Activating Genes in Germinal Center B Cells: Involvement of Interleukin 7 (IL-7) and the IL-7 Receptor , 1998, The Journal of experimental medicine.

[33]  V. Kouskoff,et al.  V(D)J recombinase induction in splenic B lymphocytes is inhibited by antigen-receptor signalling , 1998, Nature.

[34]  S. Clarke,et al.  B-1 Cell Development: Evidence for an Uncommitted Immunoglobulin (Ig)M+ B Cell Precursor in B-1 Cell Differentiation , 1998, The Journal of experimental medicine.

[35]  M. Hikida,et al.  Rearrangement of λ Light Chain Genes in Mature B Cells In Vitro and In Vivo. Function of Reexpressed Recombination-activating Gene (RAG) Products , 1998, The Journal of experimental medicine.

[36]  D. Nemazee,et al.  Developmental Regulation of B Lymphocyte Immune Tolerance Compartmentalizes Clonal Selection from Receptor Selection , 1998, Cell.

[37]  K. Rajewsky,et al.  Receptor editing in a transgenic mouse model: site, efficiency, and role in B cell tolerance and antibody diversification. , 1997, Immunity.

[38]  Heikyung Suh,et al.  V(D)J recombination in mature B cells: a mechanism for altering antibody responses. , 1997, Science.

[39]  G. Kelsoe,et al.  V(D)J recombinase activity in a subset of germinal center B lymphocytes. , 1997, Science.

[40]  D. Nemazee,et al.  Self-antigen does not accelerate immature B cell apoptosis, but stimulates receptor editing as a consequence of developmental arrest. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[41]  L A Herzenberg,et al.  Frequent occurrence of identical heavy and light chain Ig rearrangements. , 1997, International immunology.

[42]  E. Kabat,et al.  Recurrent Identical Rearrangement and Repeated Expression of Identical Heavy and Light Chains in Single Anti‐phosphatidylcholine B Cells a , 1997, Annals of the New York Academy of Sciences.

[43]  D. Nemazee,et al.  BCR ligation induces receptor editing in IgM+IgD- bone marrow B cells in vitro. , 1997, Immunity.

[44]  T. Takai,et al.  Characterization of B cells expressing recombination activating genes in germinal centers of immunized mouse lymph nodes. , 1997, Journal of immunology.

[45]  J. Bodmer,et al.  IMGT, the international ImMunoGeneTics database , 2000, Nucleic Acids Res..

[46]  D. Schatz,et al.  Neoteny in Lymphocytes: Rag1 and Rag2 Expression in Germinal Center B Cells , 1996, Science.

[47]  T. Takai,et al.  Reexpression of RAG-1 and RAG-2 Genes in Activated Mature Mouse B cells , 1996, Science.

[48]  A. L. Wong,et al.  Two kappa immunoglobulin light chains are secreted by an anti-DNA hybridoma: implications for isotypic exclusion. , 1995, Molecular immunology.

[49]  A. Rolink,et al.  Stimulation by T Cell Independent Antigens Can Relieve the Arrest of Differentiation of Immature Auto‐Reactive B Cells in the Bone Marrow * , 1995, Scandinavian journal of immunology.

[50]  D. Longo,et al.  Ig gamma 2b transgenes promote B cell development but alternate developmental pathways appear to function in different transgenic lines. , 1995, Journal of immunology.

[51]  A. Lanzavecchia,et al.  kappa+lambda+ dual receptor B cells are present in the human peripheral repertoire , 1995, The Journal of experimental medicine.

[52]  R. Hardy,et al.  The site and stage of anti-DNA B-cell deletion , 1995, Nature.

[53]  M. Cooke,et al.  Self-tolerance checkpoints in B lymphocyte development. , 1995, Advances in immunology.

[54]  C. Goodnow,et al.  Censoring of self-reactive B cells with a range of receptor affinities in transgenic mice expressing heavy chains for a lysozyme-specific antibody. , 1994, International immunology.

[55]  P. Linsley,et al.  Immunoglobulin signal transduction guides the specificity of B cell-T cell interactions and is blocked in tolerant self-reactive B cells , 1994, The Journal of experimental medicine.

[56]  A. Casadevall,et al.  Short Communication: Simultaneous Expression of k and λ Light Chains in a Murine IgG3 Anti-Cryptococcus neoformans Hybridoma Cell Line , 1994 .

[57]  M. Pauza,et al.  Unusual patterns of immunoglobulin gene rearrangement and expression during human B cell ontogeny: human B cells can simultaneously express cell surface kappa and lambda light chains , 1993, The Journal of experimental medicine.

[58]  S. Camper,et al.  Receptor editing: an approach by autoreactive B cells to escape tolerance , 1993, The Journal of experimental medicine.

[59]  D. Nemazee,et al.  Receptor editing in self-reactive bone marrow B cells , 1993, The Journal of experimental medicine.

[60]  J Erikson,et al.  B lymphocytes may escape tolerance by revising their antigen receptors , 1993, The Journal of experimental medicine.

[61]  M. Cooke,et al.  Elimination of self-reactive B lymphocytes proceeds in two stages: Arrested development and cell death , 1993, Cell.

[62]  L. Herzenberg,et al.  Origin of murine B cell lineages. , 1993, Annual review of immunology.

[63]  F. Fumoux,et al.  IGMκ/λ EBV human B cell clone: An early step of differentiation of fetal B cells or A distinct B lineage? , 1992 .

[64]  G. Morahan,et al.  Peripheral deletion of self-reactive B cells , 1991, Nature.

[65]  D. Longo,et al.  Selection of antigen-specific, idiotype-positive B cells in transgenic mice expressing a rearranged M167-mu heavy chain gene , 1991, The Journal of experimental medicine.

[66]  C. Goodnow,et al.  Elimination from peripheral lymphoid tissues of self-reactive B lymphocytes recognizing membrane-bound antigens , 1991, Nature.

[67]  D. Nemazee,et al.  Clonal deletion of autoreactive B lymphocytes in bone marrow chimeras. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[68]  D. Nemazee,et al.  Clonal deletion of B lymphocytes in a transgenic mouse bearing anti-MHC class I antibody genes , 1989, Nature.

[69]  J. Hagman,et al.  Ig lambda-producing B cells do not show feedback inhibition of gene rearrangement. , 1988, Journal of immunology.

[70]  S. Smith‐Gill,et al.  Altered immunoglobulin expression and functional silencing of self-reactive B lymphocytes in transgenic mice , 1988, Nature.

[71]  C. Paige,et al.  Detection of normal B-cell precursors that give rise to colonies producing both kappa and lambda light immunoglobulin chains. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[72]  R. Gambari,et al.  Monoclonal origin of B cells producing k, λ and kλ immunoglobulin light chains in a patient with chronic lymphocytic leukemia , 1987 .

[73]  J. Dangl,et al.  Frequent lambda light chain gene rearrangement and expression in a Ly-1 B lymphoma with a productive kappa chain allele. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[74]  T. Honjo,et al.  Preferential rearrangement of the immunoglobulin kappa chain joining region J kappa 1 and J kappa 2 segments in mouse spleen DNA. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[75]  D. Wood,et al.  Different joining region J elements of the murine kappa immunoglobulin light chain locus are used at markedly different frequencies. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[76]  J. Seidman,et al.  Two kappa immunoglobulin genes are expressed in the myeloma S107 , 1981, Cell.

[77]  D. Baltimore,et al.  Dual expression of λ genes in the MOPC-315 plasmacytoma , 1981, Nature.

[78]  J. E. Hopper,et al.  Comparative studies on monotypic IgM lambda and IgG kappa from an individual patient. IV. Immunofluorescent evidence for a common clonal synthesis. , 1977, Blood.

[79]  J. Cebra,et al.  RABBIT LYMPHOID CELLS DIFFERENTIATED WITH RESPECT TO α-, γ-, AND µ- HEAVY POLYPEPTIDE CHAINS AND TO ALLOTYPIC MARKERS AA1 AND AA2 , 1966, The Journal of experimental medicine.

[80]  Benvenuto Pernis,et al.  CELLULAR LOCALIZATION OF IMMUNOGLOBULINS WITH DIFFERENT ALLOTYPIC SPECIFICITIES IN RABBIT LYMPHOID TISSUES , 1965, The Journal of experimental medicine.

[81]  F. Burnet The clonal selection theory of acquired immunity , 1959 .