Novel Electro-Optical Coupling Technique for Magnetic Resonance-Compatible Positron Emission Tomography Detectors

A new magnetic resonance imaging (MRI)-compatible positron emission tomography (PET) detector design is being developed that uses electro-optical coupling to bring the amplitude and arrival time information of high-speed PET detector scintillation pulses out of an MRI system. The electro-optical coupling technology consists of a magnetically insensitive photodetector output signal connected to a nonmagnetic vertical cavity surface emitting laser (VCSEL) diode that is coupled to a multimode optical fiber. This scheme essentially acts as an optical wire with no influence on the MRI system. To test the feasibility of this approach, a lutetium-yttrium oxyorthosilicate crystal coupled to a single pixel of a solid-state photomultiplier array was placed in coincidence with a lutetium oxyorthosilicate crystal coupled to a fast photomultiplier tube with both the new nonmagnetic VCSEL coupling and the standard coaxial cable signal transmission scheme. No significant change was observed in 511 keV photopeak energy resolution and coincidence time resolution. This electro-optical coupling technology enables an MRI-compatible PET block detector to have a reduced electromagnetic footprint compared with the signal transmission schemes deployed in the current MRI/PET designs.

[1]  R. C. Hawkes,et al.  Development of a Combined microPET®-MR System , 2006, 2006 IEEE Nuclear Science Symposium Conference Record.

[2]  Shigeru Kawai Handbook of Optical Interconnects , 2005 .

[3]  M. Wendland,et al.  Evaluation of a MR-compatible CZT detector , 2007, 2007 IEEE Nuclear Science Symposium Conference Record.

[4]  Bernd J. Pichler,et al.  PET/MRI hybrid imaging: devices and initial results , 2008, European Radiology.

[5]  S. Cherry,et al.  A study of artefacts in simultaneous PET and MR imaging using a prototype MR compatible PET scanner. , 1999, Physics in medicine and biology.

[6]  A. Stewart,et al.  Tiled silicon photomultipliers for large-area low-light sensing applications , 2007, SPIE OPTO.

[7]  A. Polley,et al.  40Gbps links using plastic optical fiber , 2007, OFC/NFOEC 2007 - 2007 Conference on Optical Fiber Communication and the National Fiber Optic Engineers Conference.

[8]  Kanai S. Shah,et al.  Position-sensitive avalanche photodiodes for gamma-ray imaging , 2002 .

[9]  B. K. Swann,et al.  PET/MR images acquired with a compact MR-compatible PET detector in a 7-T magnet. , 2007, Radiology.

[10]  Bernd J. Pichler,et al.  Simultaneous MR/PET for brain imaging: First patient scans , 2007 .

[11]  V. Saveliev,et al.  Study of the properties of new SPM detectors , 2006, SPIE OPTO.

[12]  Simon R. Cherry,et al.  Development of a PET detector system compatible with MRI/NMR systems , 1997 .

[13]  Ciprian Catana,et al.  Simultaneous PET-MRI: a new approach for functional and morphological imaging , 2008, Nature Medicine.

[14]  P. Halsted,et al.  Design and development of an MR-compatible PET scanner for imaging small animals , 2004, IEEE Transactions on Nuclear Science.

[15]  S R Cherry,et al.  A microPET/CT system for in vivo small animal imaging. , 2007, Physics in medicine and biology.

[16]  Craig S. Levin,et al.  New Imaging Technologies to Enhance the Molecular Sensitivity of Positron Emission Tomography , 2008, Proceedings of the IEEE.

[17]  D. Renker Geiger-mode avalanche photodiodes, history, properties and problems , 2006 .

[18]  D.F. Newport,et al.  Performance Evaluation of the microPET®—FOCUS-F120 , 2007, IEEE Transactions on Nuclear Science.

[19]  Dirk Meier,et al.  A multi-ring small animal CZT system for simultaneous SPECT/MRI imaging , 2007 .

[20]  Robert C. Weast,et al.  Handbook of chemistry and physics : a readyreference book of chemical and physical data , 1972 .

[21]  Z. Cho,et al.  A hybrid PET-MRI: An integrated molecular-genetic imaging system with HRRT-PET and 7.0-T MRI , 2007 .

[22]  Markus Vester,et al.  APD-based PET detector for simultaneous PET/MR imaging , 2006 .

[23]  S. Cherry,et al.  Simultaneous acquisition of multislice PET and MR images: initial results with a MR-compatible PET scanner. , 2006, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[24]  S. Cherry,et al.  Simultaneous in vivo positron emission tomography and magnetic resonance imaging , 2008, Proceedings of the National Academy of Sciences of the United States of America.

[25]  Fritz Schick,et al.  Whole-body MRI at high field: technical limits and clinical potential , 2005, European Radiology.

[26]  Jeffrey T. Yap,et al.  Performance evaluation of the microPET-Focus - F120 , 2004 .

[27]  Habib Zaidi,et al.  Simultaneous PET/MR will replace PET/CT as the molecular multimodality imaging platform of choice: Point/Counterpoint , 2007 .

[28]  S. Cherry The 2006 Henry N. Wagner Lecture: Of mice and men (and positrons)--advances in PET imaging technology. , 2006, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[29]  F. Habte,et al.  Investigation of position sensitive avalanche photodiodes for a new high-resolution PET detector design , 2003, IEEE Transactions on Nuclear Science.

[30]  D. Townsend Multimodality imaging of structure and function , 2008, Physics in medicine and biology.

[31]  B. Pichler,et al.  Pre-clinical PET/MR: technological advances and new perspectives in biomedical research , 2009, European Journal of Nuclear Medicine and Molecular Imaging.

[32]  Ciprian Catana,et al.  Performance test of an LSO-APD detector in a 7-T MRI scanner for simultaneous PET/MRI. , 2006, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.