On Multiple Query Optimization in Data Mining

Traditional multiple query optimization methods focus on identifying common subexpressions in sets of relational queries and on constructing their global execution plans. In this paper we consider the problem of optimizing sets of data mining queries submitted to a Knowledge Discovery Management System. We describe the problem of data mining query scheduling and we introduce a new algorithm called CCAgglomerative to schedule data mining queries for frequent itemset discovery.

[1]  Timos K. Sellis,et al.  Multiple-query optimization , 1988, TODS.

[2]  Bart Demoen,et al.  Improving the Efficiency of Inductive Logic Programming Through the Use of Query Packs , 2011, J. Artif. Intell. Res..

[3]  Heikki Mannila,et al.  A database perspective on knowledge discovery , 1996, CACM.

[4]  Elena Baralis,et al.  Incremental Refinement of Mining Queries , 1999, DaWaK.

[5]  David J. DeWitt,et al.  Using a knowledge cache for interactive discovery of association rules , 1999, KDD '99.

[6]  Ramakrishnan Srikant,et al.  Fast algorithms for mining association rules , 1998, VLDB 1998.

[7]  Ramakrishnan Srikant,et al.  Fast Algorithms for Mining Association Rules in Large Databases , 1994, VLDB.

[8]  Marek Wojciechowski,et al.  Data Mining Query Scheduling for Apriori Common Counting , 2004 .

[9]  T. Imielinski,et al.  A database perspective on knowledge discovery : A database perspective on knowledge discovery , 1996 .

[10]  Marek Wojciechowski,et al.  Evaluation of the Mine-Merge Method for Data Mining Query Processing , 2004, ADBIS.

[11]  Jiawei Han,et al.  Maintenance of discovered association rules in large databases: an incremental updating technique , 1996, Proceedings of the Twelfth International Conference on Data Engineering.

[12]  Tomasz Imielinski,et al.  Mining association rules between sets of items in large databases , 1993, SIGMOD Conference.

[13]  Marek Wojciechowski,et al.  Evaluation of Common Counting Method for Concurrent Data Mining Queries , 2003, ADBIS.

[14]  Jan Komorowski,et al.  Principles of Data Mining and Knowledge Discovery , 2001, Lecture Notes in Computer Science.

[15]  Tadeusz Morzy,et al.  Materialized Data Mining Views , 2000, PKDD.