WISE Y DWARFS AS PROBES OF THE BROWN DWARF–EXOPLANET CONNECTION

We have determined astrometric positions for 15 WISE-discovered late-type brown dwarfs (six T8-9 and nine Y dwarfs) using the Keck-II telescope, the Spitzer Space Telescope, and the Hubble Space Telescope. Combining data from 8 to 20 epochs we derive parallactic and proper motions for these objects, which puts the majority within 15?pc. For ages greater than a few Gyr, as suggested from kinematic considerations, we find masses of 10-30 M Jup based on standard models for the evolution of low-mass objects with a range of mass estimates for individual objects, depending on the model in question. Three of the coolest objects have effective temperatures ~350?K and inferred masses of 10-15 M Jup. Our parallactic distances confirm earlier photometric estimates and direct measurements and suggest that the number of objects with masses below about 15 M Jup must be flat or declining, relative to higher mass objects. The masses of the coldest Y dwarfs may be similar to those inferred for recently imaged planet-mass companions to nearby young stars. Objects in this mass range, which appear to be rare in both the interstellar and protoplanetary environments, may both have formed via gravitational fragmentation?the brown dwarfs in interstellar clouds and companion objects in a protoplanetary disk. In both cases, however, the fact that objects in this mass range are relatively infrequent suggests that this mechanism must be inefficient in both environments.

[1]  J. Davy Kirkpatrick,et al.  New spectral types L and T , 2005 .

[2]  K. R. Lang,et al.  Astrophysical Formulae: A Compendium for the Physicist and Astrophysicist , 1974 .

[3]  S. Kulkarni,et al.  Discovery of a cool brown dwarf , 1995, Nature.

[4]  A. Whitworth,et al.  Brown dwarf formation by gravitational fragmentation of massive, extended protostellar discs , 2007, 0708.2827.

[5]  Thomas E. Lutz,et al.  ON THE USE OF TRIGONOMETRIC PARALLAXES FOR THE CALIBRATION OF LUMINOSITY SYSTEMS: THEORY , 1973 .

[6]  J. Bochanski,et al.  DISCOVERY OF A CANDIDATE FOR THE COOLEST KNOWN BROWN DWARF , 2011, 1102.5411.

[7]  Ben Zuckerman,et al.  Young Stars Near the Sun , 2004 .

[8]  Christopher W. Stubbs,et al.  The macho project first-year large magellanic cloud results: The microlensing rate and the nature of the galactic dark halo , 1996 .

[9]  D. Saumon,et al.  A COMPARISON OF NEAR-INFRARED PHOTOMETRY AND SPECTRA FOR Y DWARFS WITH A NEW GENERATION OF COOL CLOUDY MODELS , 2012, 1212.1210.

[10]  Gautam Vasisht,et al.  Project 1640: the world's first ExAO coronagraphic hyperspectral imager for comparative planetary science , 2012, Other Conferences.

[11]  Brenda C. Matthews,et al.  Discovery of a Large Dust Disk Around the Nearby Star AU Microscopii , 2004, Science.

[12]  Michael C. Liu,et al.  THE HAWAII INFRARED PARALLAX PROGRAM. I. ULTRACOOL BINARIES AND THE L/T TRANSITION, , 2012, 1201.2465.

[13]  Dynamical Instabilities in Extrasolar Planetary Systems Containing Two Giant Planets , 2000, astro-ph/0010178.

[14]  R. Larson Cloud fragmentation and stellar masses , 1985 .

[15]  A. Whitworth,et al.  The properties of brown dwarfs and low-mass hydrogen-burning stars formed by disc fragmentation , 2008, 0810.1687.

[16]  S. E. Persson,et al.  CONFIRMATION OF ONE OF THE COLDEST KNOWN BROWN DWARFS , 2011, 1110.4353.

[17]  L. Hillenbrand,et al.  Accretion in Young Stellar/Substellar Objects , 2003, astro-ph/0304078.

[18]  S. Casertano,et al.  Some possible regularities in the missing mass problem , 1985 .

[19]  D. Saumon,et al.  NEGLECTED CLOUDS IN T AND Y DWARF ATMOSPHERES , 2012, 1206.4313.

[20]  Subhanjoy Mohanty,et al.  The T Tauri Phase Down to Nearly Planetary Masses: Echelle Spectra of 82 Very Low Mass Stars and Brown Dwarfs , 2005, astro-ph/0502155.

[21]  K. Ulaczyk,et al.  Unbound or distant planetary mass population detected by gravitational microlensing , 2011, Nature.

[22]  Donald W. McCarthy, Jr.,et al.  Deep Near-Infrared Observations of L1014: Revealing the Nature of the Core and Its Embedded Source , 2005, astro-ph/0509302.

[23]  A. Vigan,et al.  The International Deep Planet Survey - I. The frequency of wide-orbit massive planets around A-stars , 2012, 1206.4048.

[24]  M. Bate Stellar, brown dwarf and multiple star properties from a radiation hydrodynamical simulation of star cluster formation , 2011, 1110.1092.

[25]  Douglas M. Summers,et al.  The W. M. Keck Observatory Laser Guide Star Adaptive Optics System: Performance Characterization , 2006 .

[26]  Maarten Schmidt,et al.  Space Distribution and Luminosity Functions of Quasi-Stellar Radio Sources , 1968 .

[27]  M. R. Haas,et al.  PLANET OCCURRENCE WITHIN 0.25 AU OF SOLAR-TYPE STARS FROM KEPLER , 2011, 1103.2541.

[28]  Y. Alibert,et al.  Characterization of exoplanets from their formation - I. Models of combined planet formation and evolution , 2012, 1206.6103.

[29]  Volker Bromm,et al.  The formation of a star cluster: predicting the properties of stars and brown dwarfs , 2002, astro-ph/0212380.

[30]  The minimum mass for star formation, and the origin of binary brown dwarfs , 2006, astro-ph/0610039.

[31]  Molefe Mokoene,et al.  The Messenger , 1995, Outrageous Fortune.

[32]  S. P. Littlefair,et al.  76 T dwarfs from the UKIDSS LAS : benchmarks, kinematics and an updated space density , 2013, 1304.7246.

[33]  Dominic J. Benford,et al.  Explanatory Supplement to the WISE Preliminary Data Release Products , 2011, WISE 2011.

[34]  Geoffrey A. Blake,et al.  An old disk still capable of forming a planetary system , 2013, Nature.

[35]  E. Vorobyov Formation of giant planets and brown dwarfs on wide orbits , 2013 .

[36]  C. Beichman,et al.  Candidate solar-type protostars in nearby molecular cloud cores , 1986 .

[37]  Philip A. Ianna,et al.  The Solar Neighborhood. XVII. Parallax Results from the CTIOPI 0.9 m Program: 20 New Members of the RECONS 10 Parsec Sample , 2006, astro-ph/0608230.

[38]  P. Kroupa,et al.  THE ASTROPHYSICAL JOURNAL Preprint typeset using LATEX style emulateapj v. 10/09/06 A DISCONTINUITY IN THE LOW-MASS INITIAL MASS FUNCTION , 2007 .

[39]  P. Andre',et al.  Interferometric Identification of a Pre–Brown Dwarf , 2012, Science.

[40]  Jonathan P. Williams,et al.  Circumstellar Dust Disks in Taurus-Auriga: The Submillimeter Perspective , 2005, astro-ph/0506187.

[41]  M. Marley,et al.  On the Luminosity of Young Jupiters , 2006, astro-ph/0609739.

[42]  T. Guillot,et al.  A Nongray Theory of Extrasolar Giant Planets and Brown Dwarfs , 1997, astro-ph/9705201.

[43]  Jonathan P. Williams,et al.  A Submillimeter View of Circumstellar Dust Disks in ρ Ophiuchi , 2007, 0708.4185.

[44]  F. Adams,et al.  Star Formation in Molecular Clouds: Observation and Theory , 1987 .

[45]  S. Basu,et al.  A HYBRID SCENARIO FOR THE FORMATION OF BROWN DWARFS AND VERY LOW MASS STARS , 2012, 1203.0274.

[46]  Ronald C. Stone An Accurate Method for Computing Atmospheric Refraction , 1996 .

[47]  John Asher Johnson,et al.  THE TRENDS HIGH-CONTRAST IMAGING SURVEY. IV. THE OCCURRENCE RATE OF GIANT PLANETS AROUND M DWARFS , 2013, 1307.5849.

[48]  Douglas M. Summers,et al.  The W. M. Keck Observatory Laser Guide Star Adaptive Optics System: Overview , 2006 .

[49]  G. Neugebauer,et al.  Observations of an infrared star in the Orion nebula. , 1967 .

[50]  M. Tamura,et al.  THE PROPERTIES OF THE 500 K DWARF UGPS J072227.51−054031.2 AND A STUDY OF THE FAR-RED FLUX OF COLD BROWN DWARFS , 2012, 1201.2973.

[51]  P. Hennebelle,et al.  ANALYTICAL THEORY FOR THE INITIAL MASS FUNCTION. II. PROPERTIES OF THE FLOW , 2009, 0907.2765.

[52]  G. Fazio,et al.  The Infrared Array Camera (IRAC) for the Spitzer Space Telescope , 2004, astro-ph/0405616.

[53]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[54]  Eric B. Ford,et al.  THE FORMATION MECHANISM OF GAS GIANTS ON WIDE ORBITS , 2009, 0909.2662.

[55]  I. Kamp,et al.  Spectroscopic Binaries Among λ Bootis-type Stars , 2011, Proceedings of the International Astronomical Union.

[56]  Michael C. Cushing,et al.  THE DISCOVERY OF Y DWARFS USING DATA FROM THE WIDE-FIELD INFRARED SURVEY EXPLORER (WISE) , 2011, 1108.4678.

[57]  R. Rafikov,et al.  Can Giant Planets Form by Direct Gravitational Instability , 2005 .

[58]  Michael C. Liu,et al.  SPECTROSCOPIC CONFIRMATION OF YOUNG PLANETARY-MASS COMPANIONS ON WIDE ORBITS , 2014, 1401.7668.

[59]  M. Meyer,et al.  BINARY FORMATION MECHANISMS: CONSTRAINTS FROM THE COMPANION MASS RATIO DISTRIBUTION , 2011, 1106.3064.

[60]  Jay Anderson,et al.  Using Resolved Galaxies in Hubble Space Telescope Images to Measure Absolute Proper Motions , 2008 .

[61]  M. Skrutskie,et al.  PARALLAXES AND PROPER MOTIONS OF ULTRACOOL BROWN DWARFS OF SPECTRAL TYPES Y AND LATE T , 2012, 1211.6977.

[62]  Andrew Cumming,et al.  The Keck Planet Search: Detectability and the Minimum Mass and Orbital Period Distribution of Extrasolar Planets , 2008, 0803.3357.

[63]  K. Schmidt K. E. LANG : Astrophysical Formulae. A Compendium for the Physicist and Astrophysicist. Springer‐Verlag, Berlin‐Heidelberg‐New York. 1974. XXVII + 735 Seiten. Preis geb. DM I92.‐ , 1976 .

[64]  E. al.,et al.  The Sloan Digital Sky Survey: Technical summary , 2000, astro-ph/0006396.

[65]  Giampaolo Piotto,et al.  THE ACS SURVEY OF GLOBULAR CLUSTERS. V. GENERATING A COMPREHENSIVE STAR CATALOG FOR EACH CLUSTER , 2008 .

[66]  David G. Monet,et al.  Dwarfs Cooler than “M”: The Definition of Spectral Type “L” Using Discoveries from the 2-Micron All-Sky Survey (2MASS) , 1999 .

[67]  A. Gould,et al.  Hubble Deep Field Constraint on Baryonic Dark Matter , 1996, astro-ph/9603035.

[68]  Malcolm Smith,et al.  The Gemini Planet Imager: integration and status , 2012, Other Conferences.

[69]  P. H. Hauschildt,et al.  Evolutionary models for cool brown dwarfs and extrasolar giant planets. The case of HD 209458 , 2003 .

[70]  Michael C. Liu,et al.  TWO EXTRAORDINARY SUBSTELLAR BINARIES AT THE T/Y TRANSITION AND THE Y-BAND FLUXES OF THE COOLEST BROWN DWARFS, , 2012, 1206.4044.

[71]  University of Toronto,et al.  THE RUNTS OF THE LITTER: WHY PLANETS FORMED THROUGH GRAVITATIONAL INSTABILITY CAN ONLY BE FAILED BINARY STARS , 2009, 0909.2644.

[72]  M. Skrutskie,et al.  A STUDY OF THE DIVERSE T DWARF POPULATION REVEALED BY WISE , 2013, 1301.3913.

[73]  ON THE DISTRIBUTION OF PROTOSTAR MASSES , 2009, 0910.3120.

[74]  Laird M. Close,et al.  THE GEMINI NICI PLANET-FINDING CAMPAIGN: THE FREQUENCY OF GIANT PLANETS AROUND YOUNG B AND A STARS , 2013, Proceedings of the International Astronomical Union.

[75]  L. Hartmann,et al.  Measuring Accretion in Young Substellar Objects: Approaching the Planetary Mass Regime , 2005, astro-ph/0502023.

[76]  D. Lynden-Bell,et al.  The minimum Jeans mass or when fragmentation must stop. , 1976 .

[77]  Frank J. Low,et al.  Discovery of an infrared nebula in Orion. , 1967 .

[78]  L. Allen,et al.  THE LUMINOSITIES OF PROTOSTARS IN THE SPITZER c2d AND GOULD BELT LEGACY CLOUDS , 2013, 1301.4416.

[79]  S. Majewski,et al.  THE ACS SURVEY OF GLOBULAR CLUSTERS. V. GENERATING A COMPREHENSIVE STAR CATALOG FOR EACH CLUSTER , 2008, 0804.2025.

[80]  Arno A. Penzias,et al.  CARBON MONOXIDE IN THE ORION NEBULA. , 1970 .

[81]  M. Skrutskie,et al.  FURTHER DEFINING SPECTRAL TYPE “Y” AND EXPLORING THE LOW-MASS END OF THE FIELD BROWN DWARF MASS FUNCTION , 2012, 1205.2122.

[82]  P. Padoan,et al.  The “Mysterious” Origin of Brown Dwarfs , 2002, astro-ph/0205019.

[83]  Dominic J. Benford,et al.  THE FIRST HUNDRED BROWN DWARFS DISCOVERED BY THE WIDE-FIELD INFRARED SURVEY EXPLORER (WISE) , 2011, 1108.4677.

[84]  E. L. Wright,et al.  THE COLDEST BROWN DWARF (OR FREE-FLOATING PLANET)?: THE Y DWARF WISE 1828+2650 , 2013, 1301.1669.

[85]  A. Kraus,et al.  Distances, Luminosities, and Temperatures of the Coldest Known Substellar Objects , 2013, Science.

[86]  E. Guenther,et al.  UVES spectra of young brown dwarfs in Cha I: Radial and rotational velocities ? , 2001, astro-ph/0110175.

[87]  B. Macintosh,et al.  Direct Imaging of Multiple Planets Orbiting the Star HR 8799 , 2008, Science.

[88]  R. Larson Thermal physics, cloud geometry and the stellar initial mass function , 2005 .

[89]  Yann Alibert,et al.  New Jupiter and Saturn Formation Models Meet Observations , 2005, astro-ph/0504598.

[90]  A. Boss,et al.  Possible Rapid Gas Giant Planet Formation in the Solar Nebula and Other Protoplanetary Disks , 2000, The Astrophysical journal.

[91]  D. Saumon,et al.  The Evolution of L and T Dwarfs in Color-Magnitude Diagrams , 2008, 0808.2611.