Laser sintering of silver nanoparticle thin films: microstructure and optical properties

We present a method for the sintering of silver (Ag) nanoparticle thin films by millisecond pulsed laser irradiation. The microstructure of sintered thin films and sintering behaviors of nanoparticles were systematically investigated in this paper. Absorption spectra of sintered thin films showed blue-shifted surface plasmon resonances (SPR) from 500 nm to 480 nm and red-shifted from 480 nm to 550 nm when laser power was varied from 100 W to 140 W and from 140 W to 200 W, respectively. This indicates a new technique to control light absorption through joining nanoparticles with laser sintering. According to theoretical calculations based on a heat diffusion model, the melting temperature of these Ag nanoparticles was estimated to be 440 °C during laser irradiation.

[1]  T. Girardeau,et al.  Morphology and surface-plasmon resonance of silver nanoparticles sandwiched between Si3N4 and BN layers , 2005 .

[2]  Harry A. Atwater,et al.  Plasmonic nanoparticle enhanced light absorption in GaAs solar cells , 2008 .

[3]  C. Grigoropoulos,et al.  Microstructuring by printing and laser curing of nanoparticle solutions , 2003 .

[4]  Z. Kam,et al.  Absorption and Scattering of Light by Small Particles , 1998 .

[5]  Vladimir A Mandelshtam,et al.  Structural transitions and melting in LJ(74-78) Lennard-Jones clusters from adaptive exchange Monte Carlo simulations. , 2006, The journal of physical chemistry. A.

[6]  Carmen N. Afonso,et al.  Structural studies of Ag nanocrystals embedded in amorphous Al2O3 grown by pulsed laser deposition , 2002 .

[7]  F. Stietz Laser manipulation of the size and shape of supported nanoparticles , 2001 .

[8]  M. Mirjalili,et al.  Prediction of nanoparticles’ size-dependent melting temperature using mean coordination number concept , 2008 .

[9]  Chuantong Chen,et al.  In situ observations of crystalline-to-liquid and crystalline-to-gas transitions of substrate-supported Ag nanoparticles , 2010 .

[10]  H. Nakashima,et al.  Application of silver-dispersed AlN thin film to solar control glass , 1998 .

[11]  U. Schubert,et al.  Ink‐jet Printing and Microwave Sintering of Conductive Silver Tracks , 2006 .

[12]  Ridley,et al.  All-Inorganic Field Effect Transistors Fabricated by Printing. , 1999, Science.

[13]  N. Lewis,et al.  Plasmon-Enhanced Photoluminescence of Silicon Quantum Dots: Simulation and Experiment , 2007 .

[14]  Garnett W. Bryant,et al.  Optical properties of coupled metallic nanorods for field-enhanced spectroscopy , 2005 .

[15]  J. Toudert,et al.  Selective Dichroic Patterning by Nanosecond Laser Treatment of Ag Nanostripes , 2011, Advanced materials.

[16]  M. Mahmoud,et al.  On 308 nm photofragmentation of the silver nanoparticles , 2006 .

[17]  C. Ah,et al.  Photofragmentation Dynamics of n-Dodecanethiol-Derivatized Silver Nanoparticles in Cyclohexane , 2000 .

[18]  A. Hu,et al.  Plasmonic Properties of Welded Metal Nanoparticles , 2010 .

[19]  M. El-Sayed,et al.  Simulation of the Optical Absorption Spectra of Gold Nanorods as a Function of Their Aspect Ratio and the Effect of the Medium Dielectric Constant , 1999 .

[20]  D. Alloyeau,et al.  Flash laser annealing for controlling size and shape of magnetic alloy nanoparticles , 2010, Beilstein journal of nanotechnology.

[21]  P. Ayyub,et al.  Size dependence of the optical spectrum in nanocrystalline silver , 2002 .

[22]  T. Watson,et al.  Ultrafast near infrared sintering of TiO2 layers on metal substrates for dye‐sensitized solar cells , 2011 .

[23]  P. Mali,et al.  The DNA SET: a novel device for single-molecule DNA sequencing , 2004, IEEE Transactions on Electron Devices.

[24]  H. Sirringhaus,et al.  High-Resolution Ink-Jet Printing of All-Polymer Transistor Circuits , 2000, Science.

[25]  Younan Xia,et al.  Shape-Controlled Synthesis of Gold and Silver Nanoparticles , 2002, Science.

[26]  Jooho Moon,et al.  Highly Conductive Ink Jet Printed Films of Nanosilver Particles for Printable Electronics , 2005 .

[27]  Hsien-Hsueh Lee,et al.  Inkjet printing of nanosized silver colloids , 2005, Nanotechnology.

[28]  V. Subramanian,et al.  An ink-jet-deposited passive component process for RFID , 2004, IEEE Transactions on Electron Devices.

[29]  George C. Schatz,et al.  Nanosphere Lithography: Effect of the External Dielectric Medium on the Surface Plasmon Resonance Spectrum of a Periodic Array of Silver Nanoparticles , 1999 .

[30]  R. Uang,et al.  Laser annealing of gold nanoparticles thin film using photothermal effect , 2009 .

[31]  P. Kamat,et al.  What Factors Control the Size and Shape of Silver Nanoparticles in the Citrate Ion Reduction Method , 2004 .

[32]  Muyu Zhao,et al.  Size-dependent melting point of noble metals , 2003 .

[33]  Chunxiang Xu,et al.  Low temperature sintering of Ag nanoparticles for flexible electronics packaging , 2010 .

[34]  Minyung Lee,et al.  Nonlinear absorption and refractive index measurements of silver nanorods by the Z-scan technique , 1999 .

[35]  Nathan S. Lewis,et al.  Spectral tuning of plasmon-enhanced silicon quantum dot luminescence , 2006 .

[36]  S. Uchida,et al.  Preparation of TiO2 nanocrystalline electrode for dye-sensitized solar cells by 28 GHz microwave irradiation , 2004 .

[37]  Y. Zhou,et al.  Microjoining and Nanojoining , 2008 .

[38]  D. Babonneau,et al.  In situ optical spectroscopy during deposition of Ag:Si3N4 nanocomposite films by magnetron sputtering , 2010 .

[39]  L. Kotov,et al.  Conducting and reflecting properties of thin metal films , 2004 .

[40]  Hongxing Xu,et al.  Highly Surface‐roughened “Flower‐like” Silver Nanoparticles for Extremely Sensitive Substrates of Surface‐enhanced Raman Scattering , 2009 .

[41]  W. Qi,et al.  Thermal stability of indium nanocrystals: A theoretical study , 2006 .

[42]  R. Poprawe,et al.  Laser transmission joining in microtechnology , 2006 .

[43]  Costas P. Grigoropoulos,et al.  Melt-mediated coalescence of solution-deposited ZnO nanoparticles by excimer laser annealing for thin-film transistor fabrication , 2009 .

[44]  Costas P. Grigoropoulos,et al.  Conductor microstructures by laser curing of printed gold nanoparticle ink , 2004 .

[45]  J. Fricke,et al.  Determination of the Local Thermal Diffusivity of Inhomogeneous Samples by a Modified Laser-Flash Method , 2007 .

[46]  Shigang Sun,et al.  Orientation-Dependent Structural Transition and Melting of Au Nanowires , 2009 .

[47]  W. Steen Absorption and Scattering of Light by Small Particles , 1999 .

[48]  C. Grigoropoulos,et al.  All-inkjet-printed flexible electronics fabrication on a polymer substrate by low-temperature high-resolution selective laser sintering of metal nanoparticles , 2007 .

[49]  M. M. Rathore,et al.  Engineering Heat Transfer, Second Edition , 2010 .

[50]  P. Chen,et al.  Surface-enhanced IR-visible sum frequency generation vibrational spectroscopy. , 2009, Physical chemistry chemical physics : PCCP.

[51]  H. J. Raterink Physical Processes in Laser-Materials Interactions , 1984 .

[52]  P. Buffat,et al.  Size effect on the melting temperature of gold particles , 1976 .

[53]  Tarasankar Pal,et al.  Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications. , 2007, Chemical reviews.

[54]  T. Tanaka,et al.  Size Control of Monodispersed Pt Nanoparticles and Their 2D Organization by Electrophoretic Deposition , 1999 .

[55]  Luis M Liz-Marzán,et al.  Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[56]  M. Baba,et al.  Characterization of optical and nonlinear optical properties of silver nanoparticles prepared by laser ablation in various liquids , 2004 .

[57]  Yunqi Liu,et al.  Control Synthesis of Silver Nanosheets, Chainlike Sheets, and Microwires via a Simple Solvent−Thermal Method , 2007 .

[58]  J. Solís,et al.  Linear and third-order nonlinear optical responses of multilayered Ag:Si3N4 nanocomposites , 2009, Nanotechnology.

[59]  Y. Ozaki,et al.  Silver Nanoplates with Special Shapes: Controlled Synthesis and Their Surface Plasmon Resonance and Surface-Enhanced Raman Scattering Properties , 2006 .

[60]  W. Duley,et al.  Surface enhanced Raman spectroscopic characterization of molecular structures in diamond-like carbon films , 2008 .

[61]  Fuster,et al.  Electronic structure and related properties of silver. , 1990, Physical review. B, Condensed matter.

[62]  Hiram W. Edwards,et al.  Reflectivity of Evaporated Silver Films , 1936 .

[63]  Yuping He,et al.  The effect of underlayer thin films on the surface-enhanced Raman scattering response of Ag nanorod substrates , 2010 .

[64]  M. M. Rathore Engineering Heat Transfer , 2010 .

[65]  Chien-Cheng Chang,et al.  Particle plasmons of metal nanospheres: application of multiple scattering approach. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[66]  Tomi Mattila,et al.  Electrical sintering of nanoparticle structures , 2008, Nanotechnology.

[67]  Vollmer,et al.  Width of cluster plasmon resonances: Bulk dielectric functions and chemical interface damping. , 1993, Physical review. B, Condensed matter.

[68]  Deirdre M. Ledwith,et al.  Optical Properties and Growth Aspects of Silver Nanoprisms Produced by a Highly Reproducible and Rapid Synthesis at Room Temperature , 2008 .

[69]  George C. Schatz,et al.  Nanosphere Lithography: Effect of Substrate on the Localized Surface Plasmon Resonance Spectrum of Silver Nanoparticles , 2001 .

[70]  Aldo Di Carlo,et al.  Efficient sintering of nanocrystalline titanium dioxide films for dye solar cells via raster scanning laser , 2009 .

[71]  A. Hu,et al.  From Microjoining to Nanojoining , 2010 .

[72]  C. Afonso,et al.  Morphological and interaction effects on the surface plasmon resonance of metal nanoparticles , 2003 .

[73]  I. Dmitruk,et al.  Surface plasmon as a probe for melting of silver nanoparticles , 2010, Nanotechnology.

[74]  J. Kottmann,et al.  Plasmon resonant coupling in metallic nanowires. , 2001, Optics express.

[75]  Y. Zhou,et al.  Silver Nanoparticle Paste for Low-Temperature Bonding of Copper , 2011 .