MRI Confirmed Prostate Tissue Classification with Laplacian Eigenmaps of Ultrasound RF Spectra

The delivery of therapeutic prostate interventions can be improved by intraprocedural visualization of the tumor during ultrasound-guided procedures. To this end, ultrasound-based tissue classification and registration of the clinical target volume from preoperative multiparametric MR images to intraoperative ultrasound are suggested as two potential solutions. In this paper we report techniques to implement both of these solutions. In ultrasound-based tissue typing, we employ Laplacian eigenmaps for reducing the dimensionality of the spectral feature space formed by ultrasound RF power spectra. This is followed by support vector machine classification for separating cancer from normal prostate tissue. A classification accuracy of 78.3±4.8% is reported. We also present a deformable MR-US registration method which relies on transforming the binary label maps acquired by delineating the prostate gland in both MRI and ultrasound. This method is developed to transfer the diagnostic references from MRI to US for training and validation of the proposed ultrasound-based prostate tissue classification technique. It yields a target registration error of 3.5±2.1 mm. We also report its use for MR-based dose boosting during ultrasound-guided brachytherapy.

[1]  Nassir Navab,et al.  Medical Image Computing and Computer-Assisted Intervention - MICCAI 2010, 13th International Conference, Beijing, China, September 20-24, 2010, Proceedings, Part III , 2010, MICCAI.

[2]  Mikhail Belkin,et al.  Laplacian Eigenmaps for Dimensionality Reduction and Data Representation , 2003, Neural Computation.

[3]  Chih-Jen Lin,et al.  Working Set Selection Using Second Order Information for Training Support Vector Machines , 2005, J. Mach. Learn. Res..

[4]  Jasjit S. Suri,et al.  MRI-ultrasound registration for targeted prostate biopsy , 2009, 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[5]  Nassir Navab,et al.  Manifold Learning for Image-Based Breathing Gating with Application to 4D Ultrasound , 2010, MICCAI.

[6]  V. Reuter,et al.  Typing of prostate tissue by ultrasonic spectrum analysis , 1996, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[7]  Mehdi Moradi,et al.  Multiparametric MRI maps for detection and grading of dominant prostate tumors , 2012, Journal of magnetic resonance imaging : JMRI.

[8]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[9]  Zeike A. Taylor,et al.  MR to ultrasound registration for image-guided prostate interventions , 2012, Medical Image Anal..

[10]  Vladimir Cherkassky,et al.  The Nature Of Statistical Learning Theory , 1997, IEEE Trans. Neural Networks.

[11]  William E. Lorensen,et al.  The NA-MIC Kit: ITK, VTK, pipelines, grids and 3D slicer as an open platform for the medical image computing community , 2006, 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro, 2006..

[12]  Paul J. Besl,et al.  A Method for Registration of 3-D Shapes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Helmut Ermert,et al.  Ultrasonic multifeature tissue characterization for prostate diagnostics. , 2003, Ultrasound in medicine & biology.