The Mobile Agent Rendezvous Problem in the Ring

Mobile agent computing is being used in fields as diverse as artificial intelligence, computational economics and robotics. Agents' ability to adapt dynamically and execute asynchronously and autonomously brings potential advantages in terms of fault-tolerance, flexibility and simplicity. This monograph focuses on studying mobile agents as modelled in distributed systems research and in particular within the framework of research performed in the distributed algorithms community. It studies the fundamental question of how to achieve {\em rendezvous}, the gathering of two or more agents at the same node of a network. Like leader election, such an operation is a useful subroutine in more general computations that may require the agents to synchronize, share information, divide up chores, etc. The work provides an introduction to the algorithmic issues raised by the rendezvous problem in the distributed computing setting. For the most part our investigation concentrates on the simplest case of two agents attempting to rendezvous on a ring network. Other situations including multiple agents, faulty nodes and other topologies are also examined. An extensive bibliography provides many pointers to related work not covered in the text. The presentation has a distinctly algorithmic, rigorous, distributed computing flavor and most results should be easily accessible to advanced undergraduate and graduate students in computer science and mathematics departments. Table of Contents: Models for Mobile Agent Computing / Deterministic Rendezvous in a Ring / Multiple Agent Rendezvous in a Ring / Randomized Rendezvous in a Ring / Other Models / Other Topologies

[1]  G. Pólya Über eine Aufgabe der Wahrscheinlichkeitsrechnung betreffend die Irrfahrt im Straßennetz , 1921 .

[2]  Donald E. Knuth,et al.  The Art of Computer Programming, Volume I: Fundamental Algorithms, 2nd Edition , 1997 .

[3]  Peter Alan Lee,et al.  Fault Tolerance , 1990, Dependable Computing and Fault-Tolerant Systems.

[4]  Lewis M. Branscomb,et al.  Ease of Use: A System Design Challenge , 1984, IBM Syst. J..

[5]  Manfred K. Warmuth,et al.  Computing on an anonymous ring , 1988, JACM.

[6]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[7]  Peter Winkler,et al.  Collisions Among Random Walks on a Graph , 1993, SIAM J. Discret. Math..

[8]  Nancy A. Lynch,et al.  Distributed Algorithms , 1992, Lecture Notes in Computer Science.

[9]  S. Gal,et al.  Rendezvous Search on the Line With Distinguishable Players , 1995 .

[10]  Rajeev Motwani,et al.  Randomized Algorithms , 1995, SIGA.

[11]  S. Alpern The Rendezvous Search Problem , 1995 .

[12]  G.J. Minden,et al.  A survey of active network research , 1997, IEEE Communications Magazine.

[13]  S. Gal,et al.  Rendezvous on the Line when the Players' Initial Distance is Given by an Unknown Probability Distribution , 1998 .

[14]  Dejan S. Milojicic,et al.  Mobile Objects and Agents (MOA) , 1998, Distributed Syst. Eng..

[15]  Fred Douglis,et al.  Mobility: Processes, Computers, and Agents , 1999 .

[16]  Masafumi Yamashita,et al.  Distributed memoryless point convergence algorithm for mobile robots with limited visibility , 1999, IEEE Trans. Robotics Autom..

[17]  Stefan Covaci,et al.  Active Networks , 1999 .

[18]  C. Papadimitriou,et al.  Exploring an unknown graph , 1999 .

[19]  Gerhard Weiss,et al.  Multiagent systems: a modern approach to distributed artificial intelligence , 1999 .

[20]  Nicola Santoro,et al.  Distributed coordination of a set of autonomous mobile robots , 2000, Proceedings of the IEEE Intelligent Vehicles Symposium 2000 (Cat. No.00TH8511).

[21]  G. Alexanderson The random walks of George Pólya , 2000 .

[22]  S. Gal,et al.  Rendezvous search when marks are left at the starting points , 2001 .

[23]  Gregory Dudek,et al.  Collaborative Robot Exploration and Rendezvous: Algorithms, Performance Bounds and Observations , 2001, Auton. Robots.

[24]  Giuseppe Prencipe,et al.  CORDA : distributed coordination of a set of autonomous mobile robots , 2001 .

[25]  Nicola Santoro,et al.  Black Hole Search by Mobile Agents in Hypercubes and Related Networks , 2002, OPODIS.

[26]  Krzysztof Diks,et al.  Tree exploration with little memory , 2002, SODA.

[27]  Steve Alpern,et al.  Rendezvous Search: A Personal Perspective , 2002, Oper. Res..

[28]  Steve Alpern,et al.  Searching for an Agent Who May OR May Not Want to be Found , 2002, Oper. Res..

[29]  Leigh Tesfatsion,et al.  Agent-Based Computational Economics: Growing Economies From the Bottom Up , 2002, Artificial Life.

[30]  D. Ghose,et al.  Multiple agent team theoretic decision-making for searching unknown environments , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[31]  Nicola Santoro,et al.  Multiple Agents RendezVous in a Ring in Spite of a Black Hole , 2003, OPODIS.

[32]  Jie Lin,et al.  The multi-agent rendezvous problem , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[33]  Yves Métivier,et al.  Analysis of a randomized rendezvous algorithm , 2003, Inf. Comput..

[34]  Nicola Santoro,et al.  Solving the Robots Gathering Problem , 2003, ICALP.

[35]  Nicola Santoro,et al.  Mobile agent rendezvous in a ring , 2003, 23rd International Conference on Distributed Computing Systems, 2003. Proceedings..

[36]  Nicola Santoro,et al.  Mobile Agents Rendezvous When Tokens Fail , 2004, SIROCCO.

[37]  Mark Cieliebak,et al.  Gathering Non-oblivious Mobile Robots , 2004, LATIN.

[38]  Reuven Cohen,et al.  Robot Convergence via Center-of-Gravity Algorithms , 2004, SIROCCO.

[39]  Ondrej Sýkora,et al.  Structural Information and Communication Complexity , 2004, Lecture Notes in Computer Science.

[40]  Noa Agmon,et al.  Fault-tolerant gathering algorithms for autonomous mobile robots , 2004, SODA '04.

[41]  Martín Farach-Colton LATIN 2004: Theoretical Informatics , 2004, Lecture Notes in Computer Science.

[42]  Nicola Santoro,et al.  Improved Bounds for Optimal Black Hole Search with a Network Map , 2004, SIROCCO.

[43]  Giuseppe Prencipe On the Feasibility of Gathering by Autonomous Mobile Robots , 2005, SIROCCO.

[44]  Lali Barrière,et al.  Rendezvous and Election of Mobile Agents: Impact of Sense of Direction , 2007, Theory of Computing Systems.

[45]  Nicola Santoro,et al.  Gathering of asynchronous robots with limited visibility , 2005, Theor. Comput. Sci..

[46]  Nicola Santoro,et al.  Searching for a black hole in arbitrary networks: optimal mobile agents protocols , 2006, Distributed Computing.

[47]  Andrzej Pelc,et al.  Deterministic Rendezvous in Graphs , 2003, Algorithmica.

[48]  Nicola Santoro,et al.  Exploring an Unknown Graph to Locate a Black Hole Using Tokens , 2006, IFIP TCS.

[49]  Euripides Markou,et al.  Complexity of Searching for a Black Hole , 2006, Fundam. Informaticae.

[50]  Andrzej Pelc,et al.  Asynchronous deterministic rendezvous in graphs , 2006, Theor. Comput. Sci..

[51]  Nicola Santoro,et al.  Mobile Search for a Black Hole in an Anonymous Ring , 2007, Algorithmica.

[52]  X. Zhang,et al.  Optimal Memory Rendezvous of Anonymous Mobile Agents in a Unidirectional Ring , 2006, SOFSEM.

[53]  Euripides Markou,et al.  Mobile Agent Rendezvous in a Synchronous Torus , 2006, LATIN.

[54]  Evangelos Kranakis,et al.  Mobile Agent Rendezvous: A Survey , 2006, SIROCCO.

[55]  Colin Cooper,et al.  Searching for Black-Hole Faults in a Network Using Multiple Agents , 2006, OPODIS.

[56]  Nicola Santoro,et al.  Cycling Through a Dangerous Network: A Simple Efficient Strategy for Black Hole Search , 2006, 26th IEEE International Conference on Distributed Computing Systems (ICDCS'06).

[57]  Wei Shi,et al.  Black Hole Search in Asynchronous Rings Using Tokens , 2006, CIAC.

[58]  Evangelos Kranakis,et al.  An Algorithmic Theory of Mobile Agents , 2006, TGC.

[59]  Euripides Markou,et al.  Hardness and approximation results for Black Hole Search in arbitrary networks , 2007, Theor. Comput. Sci..

[60]  Wei Shi,et al.  Locating a Black Hole in an Un-oriented Ring Using Tokens: The Case of Scattered Agents , 2007, Euro-Par.

[61]  Nicola Santoro,et al.  Computing Without Communicating: Ring Exploration by Asynchronous Oblivious Robots , 2007, OPODIS.

[62]  Wei Shi,et al.  Scattered Black Hole Search in an Oriented Ring using Tokens , 2007, 2007 IEEE International Parallel and Distributed Processing Symposium.

[63]  Nicola Santoro,et al.  Rendezvous of Mobile Agents in Unknown Graphs with Faulty Links , 2007, DISC.

[64]  Euripides Markou,et al.  Searching for a Black Hole in Synchronous Tree Networks , 2007, Comb. Probab. Comput..

[65]  Brian D. O. Anderson,et al.  The Multi-Agent Rendezvous Problem. Part 2: The Asynchronous Case , 2007, SIAM J. Control. Optim..

[66]  Nicola Santoro,et al.  Map construction of unknown graphs by multiple agents , 2007, Theor. Comput. Sci..

[67]  Nicola Santoro,et al.  Design and analysis of distributed algorithms , 2006, Wiley series on parallel and distributed computing.

[68]  Nicola Santoro,et al.  Remembering without memory: Tree exploration by asynchronous oblivious robots , 2008, Theor. Comput. Sci..

[69]  Alfredo Navarra,et al.  Taking Advantage of Symmetries: Gathering of Asynchronous Oblivious Robots on a Ring , 2008, OPODIS.

[70]  Pat Morin,et al.  Randomized Rendez-Vous with Limited Memory , 2008, LATIN.

[71]  Nicola Santoro,et al.  Ping Pong in Dangerous Graphs: Optimal Black Hole Search with Pure Tokens , 2008, DISC.

[72]  Wei Shi,et al.  Using Scattered Mobile Agents to Locate a Black Hole in an un-Oriented Ring with Tokens , 2008, Int. J. Found. Comput. Sci..

[73]  Euripides Markou,et al.  Gathering asynchronous oblivious mobile robots in a ring , 2008, Theor. Comput. Sci..

[74]  Shantanu Das Mobile Agent Rendezvous in a Ring Using Faulty Tokens , 2008, ICDCN.

[75]  T. Radzik,et al.  Approximation bounds for Black Hole Search problems , 2008 .

[76]  Jurek Czyzowicz,et al.  The Power of Tokens: Rendezvous and Symmetry Detection for Two Mobile Agents in a Ring , 2008, SOFSEM.

[77]  Shantanu Das,et al.  Rendezvous of Mobile Agents When Tokens Fail Anytime , 2008, OPODIS.

[78]  Andrzej Pelc,et al.  Deterministic Rendezvous in Trees with Little Memory , 2008, DISC.

[79]  Franck Petit,et al.  Self-stabilizing Deterministic Gathering , 2009, ALGOSENSORS.

[80]  Peter C. Mason,et al.  Map construction and exploration by mobile agents scattered in a dangerous network , 2009, 2009 IEEE International Symposium on Parallel & Distributed Processing.

[81]  Colin Cooper,et al.  Locating and repairing faults in a network with mobile agents , 2010, Theor. Comput. Sci..

[82]  Andrzej Pelc,et al.  How to meet asynchronously (almost) everywhere , 2010, SODA '10.