Sigma-point multiple particle filtering

Abstract In this paper, we introduce two new particle filtering algorithms for high-dimensional state spaces in the multiple particle filtering approach. In multiple particle filtering, the state space is partitioned and a different particle filter is used for each component of the partition. At each time step, all particle filters share information about their marginal densities so that they can adequately approximate the filtering recursion. In this paper, we propose a second order approximation to the involved densities based on sigma-point integration methods. We then introduce two different particle filters that make use of this strategy. Finally, we demonstrate their remarkable performance through simulations of a multiple target tracking scenario with a sensor network.

[1]  Branko Ristic,et al.  Beyond the Kalman Filter: Particle Filters for Tracking Applications , 2004 .

[2]  Ángel F. García-Fernández,et al.  Analysis of Kalman Filter Approximations for Nonlinear Measurements , 2013, IEEE Transactions on Signal Processing.

[3]  Mónica F. Bugallo,et al.  Particle filtering for high-dimensional systems , 2013, 2013 5th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP).

[4]  Jianyu Yang,et al.  A Computationally Efficient Particle Filter for Multitarget Tracking Using an Independence Approximation , 2013, IEEE Transactions on Signal Processing.

[5]  S. Haykin,et al.  Cubature Kalman Filters , 2009, IEEE Transactions on Automatic Control.

[6]  Nando de Freitas,et al.  Toward Practical N2 Monte Carlo: the Marginal Particle Filter , 2005, UAI.

[7]  Petar M. Djuric,et al.  Improved target tracking with particle filtering , 2009, 2009 IEEE Aerospace conference.

[8]  M. Pitt,et al.  Filtering via Simulation: Auxiliary Particle Filters , 1999 .

[9]  Mónica F. Bugallo,et al.  Multiple Particle Filtering , 2007, 2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07.

[10]  Pau Closas,et al.  Multiple Quadrature Kalman Filtering , 2012, IEEE Transactions on Signal Processing.

[11]  Ángel F. García-Fernández,et al.  Adaptive Auxiliary Particle Filter for Track-Before-Detect With Multiple Targets , 2017, IEEE Transactions on Aerospace and Electronic Systems.

[12]  Jonathan Beaudeau,et al.  Analysis of the cross-target measurement fusion likelihood for RSSI-based sensors , 2014, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[13]  Neil J. Gordon,et al.  Efficient particle filtering for multiple target tracking with application to tracking in structured images , 2003, Image Vis. Comput..

[14]  Jonathan Beaudeau,et al.  RSSI-Based Multi-Target Tracking by Cooperative Agents Using Fusion of Cross-Target Information , 2015, IEEE Transactions on Signal Processing.

[15]  Kyeong Jin Kim,et al.  Rao-Blackwellized Gauss-Hermite filter for joint state estimation in cyclic prefixed single-carrier systems , 2012, Signal Process..

[16]  P.M. Djuric,et al.  Target Tracking by Multiple Particle Filtering , 2007, 2007 IEEE Aerospace Conference.

[17]  F. Daum Exact finite dimensional nonlinear filters , 1985, 1985 24th IEEE Conference on Decision and Control.

[18]  Simon J. Godsill,et al.  On sequential Monte Carlo sampling methods for Bayesian filtering , 2000, Stat. Comput..

[19]  Pau Closas,et al.  Uncertainty Exchange Through Multiple Quadrature Kalman Filtering , 2016, IEEE Signal Processing Letters.

[20]  Simo Srkk,et al.  Bayesian Filtering and Smoothing , 2013 .

[21]  Hugh F. Durrant-Whyte,et al.  A new method for the nonlinear transformation of means and covariances in filters and estimators , 2000, IEEE Trans. Autom. Control..

[22]  Ángel F. García-Fernández,et al.  MCMC-based posterior independence approximation for RFS multitarget particle filters , 2014, 17th International Conference on Information Fusion (FUSION).

[23]  J. Huang,et al.  Curse of dimensionality and particle filters , 2003, 2003 IEEE Aerospace Conference Proceedings (Cat. No.03TH8652).

[24]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[25]  Branko Ristic,et al.  Tracking a manoeuvring target using angle-only measurements: algorithms and performance , 2003, Signal Process..

[26]  Thiagalingam Kirubarajan,et al.  Estimation with Applications to Tracking and Navigation , 2001 .

[27]  Jeffrey K. Uhlmann,et al.  Unscented filtering and nonlinear estimation , 2004, Proceedings of the IEEE.

[28]  Ba-Ngu Vo,et al.  A Consistent Metric for Performance Evaluation of Multi-Object Filters , 2008, IEEE Transactions on Signal Processing.

[29]  Robert J. Elliott,et al.  Discrete-Time Nonlinear Filtering Algorithms Using Gauss–Hermite Quadrature , 2007, Proceedings of the IEEE.

[30]  Mark R. Morelande,et al.  A Bayesian Approach to Multiple Target Detection and Tracking , 2007, IEEE Transactions on Signal Processing.

[31]  Xi Chen,et al.  Multiple dipolar sources localization for MEG using Bayesian particle filtering , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[32]  Ángel F. García-Fernández,et al.  Generalizations of the auxiliary particle filter for multiple target tracking , 2014, 17th International Conference on Information Fusion (FUSION).

[33]  Smita Sadhu,et al.  Sigma point Kalman filter for bearing only tracking , 2006, Signal Process..

[34]  Yingwei Zhao,et al.  Performance evaluation of Cubature Kalman filter in a GPS/IMU tightly-coupled navigation system , 2016, Signal Process..

[35]  Jun S. Liu,et al.  Sequential Imputations and Bayesian Missing Data Problems , 1994 .

[36]  Ángel F. García-Fernández,et al.  Two-Layer Particle Filter for Multiple Target Detection and Tracking , 2013, IEEE Transactions on Aerospace and Electronic Systems.

[37]  William Fitzgerald,et al.  A Bayesian approach to tracking multiple targets using sensor arrays and particle filters , 2002, IEEE Trans. Signal Process..