Hybridized Graphene for Chemical Sensing

[1]  P. Wallace The Band Theory of Graphite , 1947 .

[2]  U. Weimar,et al.  Understanding the fundamental principles of metal oxide based gas sensors; the example of CO sensing with SnO2 sensors in the presence of humidity , 2003 .

[3]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[4]  K. Novoselov,et al.  Graphene-based liquid crystal device. , 2008, Nano letters (Print).

[5]  J. Coleman,et al.  High-yield production of graphene by liquid-phase exfoliation of graphite. , 2008, Nature nanotechnology.

[6]  Yang Yang,et al.  High-throughput solution processing of large-scale graphene. , 2009, Nature nanotechnology.

[7]  S. Bose,et al.  Recent advances in graphene based polymer composites , 2010 .

[8]  Da Chen,et al.  Graphene-based materials in electrochemistry. , 2010, Chemical Society reviews.

[9]  Hong Dai,et al.  Direct electrochemistry and electrocatalysis of hemoglobin protein entrapped in graphene and chitosan composite film. , 2010, Talanta.

[10]  Luca Moreschini,et al.  Electronic structure of graphene on single-crystal copper substrates , 2011, 1108.2066.

[11]  Kinam Kim,et al.  A role for graphene in silicon-based semiconductor devices , 2011, Nature.

[12]  James Lloyd-Hughes,et al.  A Review of the Terahertz Conductivity of Bulk and Nano-Materials , 2012 .

[13]  Nicola Donato,et al.  Room-temperature hydrogen sensing with heteronanostructures based on reduced graphene oxide and tin oxide. , 2012, Angewandte Chemie.

[14]  Guohua Chen,et al.  Continuous mechanical exfoliation of graphene sheets via three-roll mill , 2012 .

[15]  Malini Olivo,et al.  Reduced graphene oxide conjugated Cu2O nanowire mesocrystals for high-performance NO2 gas sensor. , 2012, Journal of the American Chemical Society.

[16]  W. Sirisaksoontorn,et al.  The Electrochemical Synthesis of the Graphite Intercalation Compounds Containing Tetra-n-alkylammonium Cations , 2013 .

[17]  Xiaotao Zhu,et al.  Influence of functional graphene as filler on the tribological behaviors of Nomex fabric/phenolic composite , 2013 .

[18]  Qinqin Zhou,et al.  Ultrasensitive and selective nitrogen dioxide sensor based on self-assembled graphene/polymer composite nanofibers. , 2014, ACS applied materials & interfaces.

[19]  Jianhua Xu,et al.  In situ polymerization deposition of porous conducting polymer on reduced graphene oxide for gas sensor. , 2014, ACS applied materials & interfaces.

[20]  Vijay K. Tomer,et al.  Mesoporous Silica: Making “Sense” of Sensors , 2014 .

[21]  Jianhua Xu,et al.  Ordered and ultrathin reduced graphene oxide LB films as hole injection layers for organic light-emitting diode , 2014, Nanoscale Research Letters.

[22]  Vijay K. Tomer,et al.  One pot direct synthesis of mesoporous SnO2/SBA-15 nanocomposite by the hydrothermal method , 2014 .

[23]  Vijay K. Tomer,et al.  Humidity sensing properties of Ag-loaded mesoporous silica SBA-15 nanocomposites prepared via hydrothermal process , 2014 .

[24]  M. Pumera,et al.  Electrochemistry of graphene and related materials. , 2014, Chemical reviews.

[25]  Vijay K. Tomer,et al.  Mn-Loaded Mesoporous Silica Nanocomposite: A Highly Efficient Humidity Sensor , 2015 .

[26]  J. Tuček,et al.  Broad family of carbon nanoallotropes: classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. , 2015, Chemical reviews.

[27]  Vijay K. Tomer,et al.  Effect of in-situ loading of nano titania particles on structural ordering of mesoporous SBA-15 framework , 2015 .

[28]  X. M. Zhang,et al.  Enhanced tensile properties of aluminium matrix composites reinforced with graphene encapsulated SiC nanoparticles , 2015 .

[29]  Vijay K. Tomer,et al.  One pot synthesis of mesoporous ZnO–SiO2 nanocomposite as high performance humidity sensor , 2015 .

[30]  Vijay K. Tomer,et al.  In-situ synthesis of SnO2/SBA-15 hybrid nanocomposite as highly efficient humidity sensor , 2015 .

[31]  Vijay K. Tomer,et al.  A Novel Highly Sensitive Humidity Sensor Based on ZnO/SBA-15 Hybrid Nanocomposite , 2015 .

[32]  Vijay K. Tomer,et al.  Humidity‐Sensing Properties of Ag0 Nanoparticles Supported on WO3‐SiO2 with Super Rapid Response and Excellent Stability , 2015 .

[33]  Vijay K. Tomer,et al.  Nano titania loaded mesoporous silica: Preparation and application as high performance humidity sensor , 2015 .

[34]  Vijay K. Tomer,et al.  Highly sensitive and stable relative humidity sensors based on WO3 modified mesoporous silica , 2015 .

[35]  Vijay K. Tomer,et al.  Highly sensitive and selective volatile organic amine (VOA) sensors using mesoporous WO3–SnO2 nanohybrids , 2016 .

[36]  Vijay K. Tomer,et al.  A facile nanocasting synthesis of mesoporous Ag-doped SnO2 nanostructures with enhanced humidity sensing performance , 2016 .

[37]  Vijay K. Tomer,et al.  Ordered mesoporous Ag-doped TiO2/SnO2 nanocomposite based highly sensitive and selective VOC sensors , 2016 .

[38]  Vijay K. Tomer,et al.  Cubic mesoporous Ag@CN: a high performance humidity sensor. , 2016, Nanoscale.

[39]  Anisotropic behavior and inhomogeneity of atomic local densities of states in graphene with vacancy groups , 2016 .

[40]  Vijay K. Tomer,et al.  Fast response with high performance humidity sensing of Ag–SnO2/SBA-15 nanohybrid sensors , 2016 .

[41]  Vijay K. Tomer,et al.  Facile Synthesis of Hybridized Mesoporous Au@TiO2/SnO2 as Efficient Photocatalyst and Selective VOC Sensor , 2016 .

[42]  Vijay K. Tomer,et al.  Nano gold supported on ordered mesoporous WO3/SBA-15 hybrid nanocomposite for oxidative decolorization of azo dye , 2016 .

[43]  Vijay K. Tomer,et al.  Ordered mesoporous In-(TiO2/WO3) nanohybrid: An ultrasensitive n-butanol sensor , 2017 .

[44]  Vijay K. Tomer,et al.  Near-Room-Temperature Ethanol Detection Using Ag-Loaded Mesoporous Carbon Nitrides , 2017, ACS omega.

[45]  Vijay K. Tomer,et al.  A porous, crystalline truxene-based covalent organic framework and its application in humidity sensing , 2017 .

[46]  Tomás Torres Graphene chemistry. , 2017, Chemical Society reviews.

[47]  Vijay K. Tomer,et al.  An excellent humidity sensor based on In–SnO2 loaded mesoporous graphitic carbon nitride , 2017 .

[48]  Rainer Adelung,et al.  Single and Networked ZnO-CNT Hybrid Tetrapods for Selective Room-Temperature High-Performance Ammonia Sensors. , 2017, ACS applied materials & interfaces.

[49]  Vijay K. Tomer,et al.  Nanocasted Synthesis of Ag/WO3 Nanocomposite with Enhanced Sensing and Photocatalysis Applications , 2017 .

[50]  Vijay K. Tomer,et al.  Rapid acetone detection using indium loaded WO3/SnO2 nanohybrid sensor , 2017 .

[51]  Vijay K. Tomer,et al.  Retracted: Ordered Mesoporous Ag–ZnO@g‐CN Nanohybrid as Highly Efficient Bifunctional Sensing Material , 2018 .

[52]  Yogendra Kumar Mishra,et al.  Cubic mesoporous Pd–WO3 loaded graphitic carbon nitride (g-CN) nanohybrids: highly sensitive and temperature dependent VOC sensors , 2018 .

[53]  Vijay K. Tomer,et al.  Aero-gel assisted synthesis of anatase TiO2 nanoparticles for humidity sensing application. , 2018, Dalton transactions.

[54]  Vijay K. Tomer,et al.  A low temperature, highly sensitive and fast response toluene gas sensor based on In(III)-SnO2 loaded cubic mesoporous graphitic carbon nitride , 2018 .