Focusing-in on microtubules.

A good approximation of the atomic structure of a microtubule has been derived from docking the high-resolution structure of tubulin, solved by electron crystallography, into lower resolution maps of whole microtubules. Some structural interactions with other molecules, including nucleotides, drugs, motor proteins and microtubule-associated proteins, can now be predicted.

[1]  F. Perez,et al.  Dynamic Localization of CLIP-170 to Microtubule Plus Ends Is Coupled to Microtubule Assembly , 1999, The Journal of cell biology.

[2]  D. Raychaudhuri ZipA is a MAP–Tau homolog and is essential for structural integrity of the cytokinetic FtsZ ring during bacterial cell division , 1999, EMBO Journal.

[3]  D. van der Kooy,et al.  Mechanics of motility: distinct dynein binding domains on alpha- and beta-tubulin. , 1995, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[4]  E. Salmon,et al.  Yeast Kar3 is a minus‐end microtubule motor protein that destabilizes microtubules preferentially at the minus ends. , 1994, The EMBO journal.

[5]  E. Mandelkow,et al.  The Crystal Structure of Dimeric Kinesin and Implications for Microtubule-Dependent Motility , 1997, Cell.

[6]  S. Kotani,et al.  A new model for microtubule-associated protein (MAP)-induced microtubule assembly. The Pro-rich region of MAP4 promotes nucleation of microtubule assembly in vitro. , 1999, European journal of biochemistry.

[7]  D. Andreu,et al.  Helicity of α(404–451) and β(394–445) tubulin C‐terminal recombinant peptides , 1999, Protein science : a publication of the Protein Society.

[8]  A. Matus,et al.  Domains of Neuronal Microtubule-associated Proteins and Flexural Rigidity of Microtubules , 1997, The Journal of cell biology.

[9]  K. Hirose,et al.  3D electron microscopy of the interaction of kinesin with tubulin. , 1999, Cell structure and function.

[10]  D. Panda,et al.  Rapid treadmilling of brain microtubules free of microtubule-associated proteins in vitro and its suppression by tau. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[11]  P. Chacón,et al.  Changes in Microtubule Protofilament Number Induced by Taxol Binding to an Easily Accessible Site , 1998, The Journal of Biological Chemistry.

[12]  K. Hirose,et al.  Congruent docking of dimeric kinesin and ncd into three-dimensional electron cryomicroscopy maps of microtubule-motor ADP complexes. , 1999, Molecular biology of the cell.

[13]  T. Ceska,et al.  Three-dimensional reconstruction of tubulin in zinc-induced sheets. II. Consequences of removal of microtubule associated proteins. , 1984, Journal of molecular biology.

[14]  R. Walker,et al.  The Ncd tail domain promotes microtubule assembly and stability. , 1999, Biochemical and biophysical research communications.

[15]  N. Hirokawa,et al.  Mechanism of the single-headed processivity: diffusional anchoring between the K-loop of kinesin and the C terminus of tubulin. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[16]  Thomas Kreis,et al.  Guidebook to cytoskeletal and motor proteins , 1999 .

[17]  J. Ávila,et al.  OP18/stathmin binds near the C-terminus of tubulin and facilitates GTP binding. , 1999, European journal of biochemistry.

[18]  I. Barasoain,et al.  The microtubule-associated protein tau cross-links to two distinct sites on each alpha and beta tubulin monomer via separate domains. , 1998, Biochemistry.

[19]  E. Mandelkow,et al.  Tau regulates the attachment/detachment but not the speed of motors in microtubule-dependent transport of single vesicles and organelles. , 1999, Journal of cell science.

[20]  Timothy J. Mitchison,et al.  Kin I Kinesins Are Microtubule-Destabilizing Enzymes , 1999, Cell.

[21]  E. Nogales,et al.  High-Resolution Model of the Microtubule , 1999, Cell.

[22]  Roger Cooke,et al.  A structural change in the kinesin motor protein that drives motility , 1999, Nature.

[23]  S. Martin,et al.  Phosphate release during microtubule assembly: what stabilizes growing microtubules? , 1999, Biochemistry.

[24]  K. Loveland,et al.  Novel Low Molecular Weight Microtubule-associated Protein-2 Isoforms Contain a Functional Nuclear Localization Sequence* , 1999, The Journal of Biological Chemistry.

[25]  K. Hirose,et al.  Three-dimensional cryoelectron microscopy of 16-protofilament microtubules: structure, polarity, and interaction with motor proteins. , 1997, Journal of structural biology.

[26]  R. Milligan,et al.  Motor protein decoration of microtubules grown in high salt conditions reveals the presence of mixed lattices. , 1999, Journal of molecular biology.

[27]  M. Koonce,et al.  Functional elements within the dynein microtubule-binding domain. , 2000, Molecular biology of the cell.

[28]  E. Nogales,et al.  Tubulin and FtsZ form a distinct family of GTPases , 1998, Nature Structural Biology.

[29]  Ronald D. Vale,et al.  Role of the kinesin neck linker and catalytic core in microtubule-based motility , 2000, Current Biology.

[30]  S. Kotani,et al.  Microtubule-binding property of microtubule-associated protein 2 differs from that of microtubule-associated protein 4 and tau. , 1999, European journal of biochemistry.

[31]  K. Hirose,et al.  Nucleotide-dependent structural changes in dimeric NCD molecules complexed to microtubules. , 1998, Journal of molecular biology.

[32]  L. Amos,et al.  How Taxol stabilises microtubule structure. , 1999, Chemistry & biology.

[33]  R. Vallee,et al.  The role of the dynein stalk in cytoplasmic and flagellar motility , 1998, European Biophysics Journal.

[34]  K. Suprenant,et al.  Phosphatase-sensitive regulators of microtubule assembly copurify with sea urchin egg microtubules , 1999 .

[35]  H. Flyvbjerg,et al.  Limited flexibility of the inter-protofilament bonds in microtubules assembled from pure tubulin , 1998, European Biophysics Journal.

[36]  J Vandekerckhove,et al.  Proteolytic mapping of kinesin/ncd‐microtubule interface: nucleotide‐dependent conformational changes in the loops L8 and L12 , 1998, The EMBO journal.

[37]  E. Mandelkow,et al.  X-ray structure of motor and neck domains from rat brain kinesin. , 1997, Biochemistry.

[38]  J. Cooper,et al.  Formin' the Connection between Microtubules and the Cell Cortex , 1999, The Journal of cell biology.

[39]  Luis Serrano,et al.  Model for stathmin/OP18 binding to tubulin , 2000, The EMBO journal.

[40]  N. Hirokawa,et al.  A processive single-headed motor: kinesin superfamily protein KIF1A. , 1999, Science.

[41]  M. Bornens,et al.  GMAP-210, A Cis-Golgi Network-associated Protein, Is a Minus End Microtubule-binding Protein , 1999, The Journal of cell biology.

[42]  S. Audebert,et al.  The carboxy-terminal sequence Asp427-Glu432 of beta-tubulin plays an important function in axonemal motility. , 1999, European journal of biochemistry.

[43]  R. Vale,et al.  Microtubule disassembly by ATP-dependent oligomerization of the AAA enzyme katanin. , 1999, Science.

[44]  E. Mandelkow,et al.  Structures of kinesin and kinesin-microtubule interactions. , 1999, Current opinion in cell biology.

[45]  F. Perez,et al.  CLIP-170 Highlights Growing Microtubule Ends In Vivo , 1999, Cell.

[46]  Louise Wickham,et al.  Mammalian Staufen Is a Double-Stranded-RNA- and Tubulin-Binding Protein Which Localizes to the Rough Endoplasmic Reticulum , 1999, Molecular and Cellular Biology.

[47]  C. L. Blackburn,et al.  A marine natural product inhibitor of kinesin motors. , 1998, Science.

[48]  Masahide Kikkawa,et al.  15 Å Resolution Model of the Monomeric Kinesin Motor, KIF1A , 2000, Cell.

[49]  T. Hays,et al.  Evidence for cooperative interactions between the two motor domains of cytoplasmic dynein , 1999, Current Biology.

[50]  Kenneth H. Downing,et al.  Structure of the αβ tubulin dimer by electron crystallography , 1998, Nature.

[51]  C. Echeverri,et al.  Colocalization of cytoplasmic dynein with dynactin and CLIP-170 at microtubule distal ends. , 1999, Journal of cell science.

[52]  M. Radeke,et al.  Functional interactions between the proline-rich and repeat regions of tau enhance microtubule binding and assembly. , 1997, Molecular biology of the cell.

[53]  T. Mitchison,et al.  Microtubule polymerization dynamics. , 1997, Annual review of cell and developmental biology.

[54]  E. Katayama,et al.  Inner-arm dynein c of Chlamydomonas flagella is a single-headed processive motor , 1999, Nature.

[55]  N. Hirokawa,et al.  Competition between motor molecules (kinesin and cytoplasmic dynein) and fibrous microtubule-associated proteins in binding to microtubules. , 1994, The Journal of biological chemistry.

[56]  B. Howell,et al.  Dissociation of the tubulin-sequestering and microtubule catastrophe-promoting activities of oncoprotein 18/stathmin. , 1999, Molecular biology of the cell.

[57]  L. Amos,et al.  Tubulin‐like protofilaments in Ca2+‐induced FtsZ sheets , 1999, The EMBO journal.

[58]  R. Margolis,et al.  Nonneuronal isoforms of STOP protein are responsible for microtubule cold stability in mammalian fibroblasts. , 1998, Proceedings of the National Academy of Sciences of the United States of America.