Diamond‐Lipid Hybrids Enhance Chemotherapeutic Tolerance and Mediate Tumor Regression

Self-assembled nanodiamond-lipid hybrid particles (NDLPs) harness the potent interaction between the nanodiamond (ND)-surface and small molecules, while providing a mechanism for cell-targeted imaging and therapy of triple negative breast cancers. Epidermal growth factor receptor-targeted NDLPs are highly biocompatible particles that provide cell-specific imaging, promote tumor retention of ND-complexes, prevent epirubicin toxicities and mediate regression of triple negative breast cancers.

[1]  Mark B. Carter,et al.  The Targeted Delivery of Multicomponent Cargos to Cancer Cells via Nanoporous Particle-Supported Lipid Bilayers , 2011, Nature materials.

[2]  Y. Gogotsi,et al.  Wet chemistry route to hydrophobic blue fluorescent nanodiamond. , 2009, Journal of the American Chemical Society.

[3]  Kazuhiro Ikeda,et al.  Real-time background-free selective imaging of fluorescent nanodiamonds in vivo. , 2012, Nano letters.

[4]  Erik Pierstorff,et al.  Active nanodiamond hydrogels for chemotherapeutic delivery. , 2007, Nano letters.

[5]  Christian A. Rees,et al.  Molecular portraits of human breast tumours , 2000, Nature.

[6]  A. Gabizon,et al.  Polyethylene Glycol-Coated (Pegylated) Liposomal Doxorubicin , 2012, Drugs.

[7]  Dean Ho,et al.  Nanodiamond Vectors Functionalized with Polyethylenimine for siRNA Delivery , 2010 .

[8]  Milos Nesladek,et al.  Luminescence of Nanodiamond Driven by Atomic Functionalization: Towards Novel Detection Principles , 2012 .

[9]  F. Szoka,et al.  Soluble polymer carriers for the treatment of cancer: the importance of molecular architecture. , 2009, Accounts of chemical research.

[10]  Lei Tao,et al.  A comparative study of cellular uptake and cytotoxicity of multi-walled carbon nanotubes, graphene oxide, and nanodiamond , 2012 .

[11]  Wei Zhao,et al.  Comparative study of the in vitro and in vivo characteristics of cationic and neutral liposomes , 2011, International journal of nanomedicine.

[12]  U. Nielsen,et al.  Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models. , 2006, Cancer research.

[13]  G Blume,et al.  Liposomes for the sustained drug release in vivo. , 1990, Biochimica et biophysica acta.

[14]  Xue-Qing Zhang,et al.  Triggered release of therapeutic antibodies from nanodiamond complexes. , 2011, Nanoscale.

[15]  Jui‐I Chao,et al.  Covalent linkage of nanodiamond-paclitaxel for drug delivery and cancer therapy , 2010, Nanotechnology.

[16]  C. Papadimitriou,et al.  EGFR expression and activation are common in HER2 positive and triple-negative breast tumours. , 2010, Histology and histopathology.

[17]  E. Zubarev,et al.  Paclitaxel-functionalized gold nanoparticles. , 2007, Journal of the American Chemical Society.

[18]  Yury Gogotsi,et al.  Fluorescent PLLA-nanodiamond composites for bone tissue engineering. , 2011, Biomaterials.

[19]  H. Maeda,et al.  A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. , 1986, Cancer research.

[20]  Tiancheng Wang,et al.  Pulmonary toxicity and translocation of nanodiamonds in mice , 2010 .

[21]  Anke Krüger,et al.  Surface functionalisation of detonation diamond suitable for biological applications , 2006 .

[22]  D. Cunningham,et al.  Targeting the human EGFR family in esophagogastric cancer , 2011, Nature Reviews Clinical Oncology.

[23]  Rakesh K. Jain,et al.  Transport of molecules across tumor vasculature , 2004, Cancer and Metastasis Reviews.

[24]  G. Gregoriadis,et al.  Tissue distribution of liposomes exhibiting long half-lives in the circulation after intravenous injection. , 1985, Biochimica et biophysica acta.

[25]  T. Jovin,et al.  Targeted cellular delivery of quantum dots loaded on and in biotinylated liposomes. , 2010, Bioconjugate chemistry.

[26]  D. Papahadjopoulos,et al.  Optimizing liposomes for delivery of chemotherapeutic agents to solid tumors. , 1999, Pharmacological reviews.

[27]  Dean Ho,et al.  Multimodal Nanodiamond Drug Delivery Carriers for Selective Targeting, Imaging, and Enhanced Chemotherapeutic Efficacy , 2011, Advanced materials.

[28]  C. Mamot,et al.  Epidermal growth factor receptor-targeted immunoliposomes significantly enhance the efficacy of multiple anticancer drugs in vivo. , 2005, Cancer research.

[29]  Dean Ho,et al.  Gd(III)-nanodiamond conjugates for MRI contrast enhancement. , 2010, Nano letters.

[30]  M. Saif,et al.  Biology of Colorectal Cancer , 2010, Cancer journal.

[31]  A. Goga,et al.  Nanodiamond Therapeutic Delivery Agents Mediate Enhanced Chemoresistant Tumor Treatment , 2011, Science Translational Medicine.

[32]  Tadashi Kobayashi,et al.  EGFR as paradoxical predictor of chemosensitivity and outcome among triple-negative breast cancer. , 2009, Oncology reports.

[33]  Yury Gogotsi,et al.  The properties and applications of nanodiamonds. , 2011, Nature nanotechnology.

[34]  Dean Ho,et al.  Nanodiamond-mediated delivery of water-insoluble therapeutics. , 2009, ACS nano.

[35]  Yuanwei Chen,et al.  Biodistribution and fate of nanodiamonds in vivo , 2009 .

[36]  R. Tibshirani,et al.  Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[37]  Dean Ho,et al.  Polymer-functionalized Nanodiamond Platforms as Vehicles for Gene Delivery Keywords: Nanodiamonds · Gene Delivery · Nanocarrier · Transfection · Low Molecular Weight Polyethyleneimine (lmw Pei) , 2022 .

[38]  J. Gariépy,et al.  A comparison of EGF and MAb 528 labeled with 111In for imaging human breast cancer. , 2000, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[39]  George C Schatz,et al.  Atomistic simulation and measurement of pH dependent cancer therapeutic interactions with nanodiamond carrier. , 2011, Molecular pharmaceutics.

[40]  M. Bawendi,et al.  Renal clearance of quantum dots , 2007, Nature Biotechnology.

[41]  K. Matthay,et al.  Versatility in lipid compositions showing prolonged circulation with sterically stabilized liposomes. , 1992, Biochimica et biophysica acta.

[42]  M. Yen,et al.  Pegylated liposomal doxorubicin (Lipo-Dox) for platinum-resistant or refractory epithelial ovarian carcinoma: a Taiwanese gynecologic oncology group study with long-term follow-up. , 2006, Gynecologic oncology.

[43]  I. Ellis,et al.  An overview of assessment of prognostic and predictive factors in breast cancer needle core biopsy specimens , 2006, Journal of Clinical Pathology.

[44]  Ian O Ellis,et al.  Prognostic markers in triple‐negative breast cancer , 2007, Cancer.

[45]  Haojie Lu,et al.  Immobilization of enzyme on detonation nanodiamond for highly efficient proteolysis. , 2010, Talanta.

[46]  Wei Zhang,et al.  Genetic and epigenetic changes in lung carcinoma and their clinical implications , 2011, Modern Pathology.

[47]  K. Kono,et al.  Targetability and intracellular delivery of anti-BCG antibody-modified, pH-sensitive fusogenic immunoliposomes to tumor cells. , 2002, International journal of pharmaceutics.

[48]  Huan-Cheng Chang,et al.  In vivo imaging and toxicity assessments of fluorescent nanodiamonds in Caenorhabditis elegans. , 2010, Nano letters.

[49]  Michael Sternberg,et al.  Crystallinity and surface electrostatics of diamond nanocrystals , 2007 .