Multiscale inference about a density

We introduce a multiscale test statistic based on local order statistics and spacings that provides simultaneous confidence statements for the existence and location of local increases and decreases of a density or a failure rate. The procedure provides guaranteed finite-sample significance levels, is easy to implement and possesses certain asymptotic optimality and adaptivity properties.

[1]  R. Pyke,et al.  Tests for monotone failure rate , 1967 .

[2]  P. Bickel,et al.  Tests for Monotone Failure Rate Based on Normalized Spacings , 1969 .

[3]  Richard E. Barlow,et al.  Isotonic tests for convex orderings , 1972 .

[4]  R. Hasminskii Lower Bound for the Risks of Nonparametric Estimates of the Mode , 1979 .

[5]  I. Good,et al.  Density Estimation and Bump-Hunting by the Penalized Likelihood Method Exemplified by Scattering and Meteorite Data , 1980 .

[6]  B. Silverman,et al.  Using Kernel Density Estimates to Investigate Multimodality , 1981 .

[7]  D. Pollard Convergence of stochastic processes , 1984 .

[8]  J. Hartigan,et al.  The Dip Test of Unimodality , 1985 .

[9]  J. Wellner,et al.  Empirical Processes with Applications to Statistics , 2009 .

[10]  J. Hartigan Estimation of a Convex Density Contour in Two Dimensions , 1987 .

[11]  Grace L. Yang,et al.  Asymptotics In Statistics , 1990 .

[12]  G. Sawitzki,et al.  Excess Mass Estimates and Tests for Multimodality , 1991 .

[13]  K. Roeder Semiparametric Estimation of Normal Mixture Densities , 1992 .

[14]  James Stephen Marron,et al.  Some asymptotics for multimodality tests based on kernel density estimates , 1992 .

[15]  D. W. Scott,et al.  The Mode Tree: A Tool for Visualization of Nonparametric Density Features , 1993 .

[16]  W. Polonik Measuring Mass Concentrations and Estimating Density Contour Clusters-An Excess Mass Approach , 1995 .

[17]  Philip B. Stark,et al.  Finite-Sample Confidence Envelopes for Shape-Restricted Densities , 1995 .

[18]  Jon A. Wellner,et al.  Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .

[19]  Michael C. Minnotte,et al.  Nonparametric testing of the existence of modes , 1997 .

[20]  Ming-Yen Cheng,et al.  Calibrating the excess mass and dip tests of modality , 1998 .

[21]  Lutz Dümbgen,et al.  New goodness-of-fit tests and their application to nonparametric confidence sets , 1998 .

[22]  J. Marron,et al.  SiZer for Exploration of Structures in Curves , 1999 .

[23]  P. Hall,et al.  Mode testing in difficult cases , 1999 .

[24]  J. Marron,et al.  SCALE SPACE VIEW OF CURVE ESTIMATION , 2000 .

[25]  V. Spokoiny,et al.  Multiscale testing of qualitative hypotheses , 2001 .

[26]  Guenther Walther,et al.  Multiscale maximum likelihood analysis of a semiparametric model , 2001 .

[27]  P. Davies,et al.  Densities, spectral densities and modality , 2004, math/0410071.

[28]  Lutz Dümbgen,et al.  Application of local rank tests to nonparametric regression , 2002 .

[29]  N. Heckman,et al.  Nonparametric testing for a monotone hazard function via normalized spacings , 2004 .

[30]  P. Hall,et al.  Testing for monotone increasing hazard rate , 2005, math/0507419.