The protein interaction network of a taxis signal transduction system in a Halophilic Archaeon

[1]  E. Birney,et al.  Pfam: the protein families database , 2013, Nucleic Acids Res..

[2]  J. Tainer,et al.  Archaeal flagellar ATPase motor shows ATP-dependent hexameric assembly and activity stimulation by specific lipid binding. , 2011, The Biochemical journal.

[3]  Y. Tu,et al.  Adapt locally and act globally: strategy to maintain high chemoreceptor sensitivity in complex environments , 2011, Molecular systems biology.

[4]  C. V. Rao,et al.  Attractant Binding Induces Distinct Structural Changes to the Polar and Lateral Signaling Clusters in Bacillus subtilis Chemotaxis* , 2010, The Journal of Biological Chemistry.

[5]  Roger Alexander,et al.  CheV: CheW-like coupling proteins at the core of the chemotaxis signaling network. , 2010, Trends in microbiology.

[6]  Stefan Streif,et al.  A predictive computational model of the kinetic mechanism of stimulus-induced transducer methylation and feedback regulation through CheY in archaeal phototaxis and chemotaxis , 2010, BMC Systems Biology.

[7]  J. Falke,et al.  The core signaling proteins of bacterial chemotaxis assemble to form an ultrastable complex. , 2009, Biochemistry.

[8]  J. Lengeler,et al.  Bacterial PEP-dependent carbohydrate: phosphotransferase systems couple sensing and global control mechanisms. , 2009, Contributions to microbiology.

[9]  Dieter Oesterhelt,et al.  Phosphate-Dependent Behavior of the Archaeon Halobacterium salinarum Strain R1 , 2009, Journal of bacteriology.

[10]  Ralf Zimmer,et al.  Systems Analysis of Bioenergetics and Growth of the Extreme Halophile Halobacterium salinarum , 2009, PLoS Comput. Biol..

[11]  Wolfgang Marwan,et al.  Quantitative analysis of signal transduction in motile and phototactic cells by computerized light stimulation and model based tracking. , 2009, The Review of scientific instruments.

[12]  V. Sourjik,et al.  Dynamic map of protein interactions in the Escherichia coli chemotaxis pathway , 2009, Molecular systems biology.

[13]  Stefan Streif,et al.  Flagellar rotation in the archaeon Halobacterium salinarum depends on ATP. , 2008, Journal of molecular biology.

[14]  G. Ordal,et al.  The diverse CheC‐type phosphatases: chemotaxis and beyond , 2008, Molecular microbiology.

[15]  C. V. Rao,et al.  The three adaptation systems of Bacillus subtilis chemotaxis. , 2008, Trends in microbiology.

[16]  Dieter Oesterhelt,et al.  Physiological sites of deamidation and methyl esterification in sensory transducers of Halobacterium salinarum. , 2008, Journal of molecular biology.

[17]  Kathrin Klee,et al.  Genome information management and integrated data analysis with HaloLex , 2008, Archives of Microbiology.

[18]  Sebastian Thiem,et al.  Protein exchange dynamics at chemoreceptor clusters in Escherichia coli , 2008, Proceedings of the National Academy of Sciences.

[19]  F Pfeiffer,et al.  Evolution in the laboratory: the genome of Halobacterium salinarum strain R1 compared to that of strain NRC-1. , 2008, Genomics.

[20]  V. Tarasov,et al.  A small protein from the bop–brp intergenic region of Halobacterium salinarum contains a zinc finger motif and regulates bop and crtB1 transcription , 2008, Molecular microbiology.

[21]  Lan Huang,et al.  Identifying Dynamic Interactors of Protein Complexes by Quantitative Mass Spectrometry*S , 2008, Molecular & Cellular Proteomics.

[22]  G. Ordal,et al.  The CheC Phosphatase Regulates Chemotactic Adaptation through CheD* , 2007, Journal of Biological Chemistry.

[23]  K. Jarrell,et al.  Systematic deletion analyses of the fla genes in the flagella operon identify several genes essential for proper assembly and function of flagella in the archaeon, Methanococcus maripaludis , 2007, Molecular microbiology.

[24]  R. D. del Rosario,et al.  Modelling the CheY(D10K,Yl00W) Halobacterium salinarum mutant: sensitivity analysis allows choice of parameter to be modified in the phototaxis model. , 2007, IET systems biology.

[25]  Julie A. Hines,et al.  A proteome-wide protein interaction map for Campylobacter jejuni , 2007, Genome Biology.

[26]  V. Sourjik,et al.  Spatial organization of the bacterial chemotaxis system. , 2006, Current opinion in microbiology.

[27]  Sebastian Thiem,et al.  Determinants of chemoreceptor cluster formation in Escherichia coli , 2006, Molecular microbiology.

[28]  S. Kanaya,et al.  Large-scale identification of protein-protein interaction of Escherichia coli K-12. , 2006, Genome research.

[29]  Sheng Zhang,et al.  A Receptor-Modifying Deamidase in Complex with a Signaling Phosphatase Reveals Reciprocal Regulation , 2006, Cell.

[30]  C. Kai,et al.  Protein-protein interactions of the hyperthermophilic archaeon Pyrococcus horikoshii OT3 , 2005, Genome Biology.

[31]  Wolfgang Marwan,et al.  A quantitative model of the switch cycle of an archaeal flagellar motor and its sensory control. , 2005, Biophysical journal.

[32]  R. Aebersold,et al.  A uniform proteomics MS/MS analysis platform utilizing open XML file formats , 2005, Molecular systems biology.

[33]  L. Kiessling,et al.  Large increases in attractant concentration disrupt the polar localization of bacterial chemoreceptors , 2005, Molecular microbiology.

[34]  刘金明,et al.  IL-13受体α2降低血吸虫病肉芽肿的炎症反应并延长宿主存活时间[英]/Mentink-Kane MM,Cheever AW,Thompson RW,et al//Proc Natl Acad Sci U S A , 2005 .

[35]  Adam P Arkin,et al.  Phosphatase localization in bacterial chemotaxis: divergent mechanisms, convergent principles , 2005, Physical biology.

[36]  L. Holm,et al.  The Pfam protein families database , 2005, Nucleic Acids Res..

[37]  Dieter Oesterhelt,et al.  MpcT is the transducer for membrane potential changes in Halobacterium salinarum , 2005, Molecular microbiology.

[38]  A. Emili,et al.  Interaction network containing conserved and essential protein complexes in Escherichia coli , 2005, Nature.

[39]  Virgil L. Woods,et al.  On the use of DXMS to produce more crystallizable proteins: Structures of the T. maritima proteins TM0160 and TM1171 , 2004, Protein science : a publication of the Protein Society.

[40]  Hendrik Szurmant,et al.  Diversity in Chemotaxis Mechanisms among the Bacteria and Archaea , 2004, Microbiology and Molecular Biology Reviews.

[41]  Hendrik Szurmant,et al.  Bacillus subtilis CheC and FliY Are Members of a Novel Class of CheY-P-hydrolyzing Proteins in the Chemotactic Signal Transduction Cascade* , 2004, Journal of Biological Chemistry.

[42]  H. Berg,et al.  Functional interactions between receptors in bacterial chemotaxis , 2004, Nature.

[43]  H. Szurmant,et al.  Bacillus subtilis Hydrolyzes CheY-P at the Location of Its Action, the Flagellar Switch* , 2003, Journal of Biological Chemistry.

[44]  Wolfgang Marwan,et al.  Signal processing and flagellar motor switching during phototaxis of Halobacterium salinarum. , 2003, Genome research.

[45]  R. Aebersold,et al.  Automated statistical analysis of protein abundance ratios from data generated by stable-isotope dilution and tandem mass spectrometry. , 2003, Analytical chemistry.

[46]  Darren A. Natale,et al.  The COG database: an updated version includes eukaryotes , 2003, BMC Bioinformatics.

[47]  R. Aebersold,et al.  A statistical model for identifying proteins by tandem mass spectrometry. , 2003, Analytical chemistry.

[48]  V. Irihimovitch,et al.  Post-translational Secretion of Fusion Proteins in the Halophilic Archaea Haloferax volcanii * , 2003, The Journal of Biological Chemistry.

[49]  Satoshi Fukuchi,et al.  Unique amino acid composition of proteins in halophilic bacteria. , 2003, Journal of molecular biology.

[50]  Blagoy Blagoev,et al.  A proteomics strategy to elucidate functional protein-protein interactions applied to EGF signaling , 2003, Nature Biotechnology.

[51]  M. Mann,et al.  Stop and go extraction tips for matrix-assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics. , 2003, Analytical chemistry.

[52]  V. Irihimovitch,et al.  Isolation of fusion proteins containing SecY and SecE, components of the protein translocation complex from the halophilic archaeon Haloferax volcanii , 2003, Extremophiles.

[53]  Gary D Bader,et al.  Analyzing yeast protein–protein interaction data obtained from different sources , 2002, Nature Biotechnology.

[54]  J. Stock,et al.  Organization of the Receptor-Kinase Signaling Array That Regulates Escherichia coli Chemotaxis* , 2002, The Journal of Biological Chemistry.

[55]  R. M. Owen,et al.  Conserved Amplification of Chemotactic Responses through Chemoreceptor Interactions , 2002, Journal of bacteriology.

[56]  H. Berg,et al.  Binding of the Escherichia coli response regulator CheY to its target measured in vivo by fluorescence resonance energy transfer , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[57]  G. Ordal,et al.  Bacillus subtilis CheD Is a Chemoreceptor Modification Enzyme Required for Chemotaxis* , 2002, The Journal of Biological Chemistry.

[58]  Dieter Oesterhelt,et al.  A novel mode of sensory transduction in archaea: binding protein‐mediated chemotaxis towards osmoprotectants and amino acids , 2002, The EMBO journal.

[59]  M. Mann,et al.  Stable Isotope Labeling by Amino Acids in Cell Culture, SILAC, as a Simple and Accurate Approach to Expression Proteomics* , 2002, Molecular & Cellular Proteomics.

[60]  J. S. Parkinson,et al.  Collaborative signaling by mixed chemoreceptor teams in Escherichia coli , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[61]  Gideon Schreiber,et al.  Kinetic studies of protein-protein interactions. , 2002, Current opinion in structural biology.

[62]  J. Kirby,et al.  CheC is related to the family of flagellar switch proteins and acts independently from CheD to control chemotaxis in Bacillus subtilis , 2001, Molecular microbiology.

[63]  S. Schuster,et al.  The fla gene cluster is involved in the biogenesis of flagella in Halobacterium salinarum , 2001, Molecular microbiology.

[64]  K. Jarrell,et al.  The archaeal flagellum: a different kind of prokaryotic motility structure. , 2001, FEMS microbiology reviews.

[65]  J. Wojcik,et al.  The protein–protein interaction map of Helicobacter pylori , 2001, Nature.

[66]  Jason E. Gestwicki,et al.  Evolutionary Conservation of Methyl-Accepting Chemotaxis Protein Location in Bacteria andArchaea , 2000, Journal of bacteriology.

[67]  V. Thorsson,et al.  Genome sequence of Halobacterium species NRC-1. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[68]  F. Frolow,et al.  Halophilic enzymes: proteins with a grain of salt. , 2000, Biophysical chemistry.

[69]  R. Ortenberg,et al.  Evidence for Post-translational Membrane Insertion of the Integral Membrane Protein Bacterioopsin Expressed in the Heterologous Halophilic Archaeon Haloferax volcanii * , 2000, The Journal of Biological Chemistry.

[70]  M. Alam,et al.  Myoglobin-like aerotaxis transducers in Archaea and Bacteria , 2000, Nature.

[71]  D. Oesterhelt,et al.  BasT, a membrane‐bound transducer protein for amino acid detection in Halobacterium salinarum , 2000, Molecular microbiology.

[72]  J. Spudich,et al.  Identification of Methylation Sites and Effects of Phototaxis Stimuli on Transducer Methylation in Halobacterium salinarum , 1999, Journal of bacteriology.

[73]  T. Duke,et al.  Heightened sensitivity of a lattice of membrane receptors. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[74]  J. Stock,et al.  Mechanism of CheA protein kinase activation in receptor signaling complexes. , 1999, Biochemistry.

[75]  Dieter Oesterhelt,et al.  Car: a cytoplasmic sensor responsible for arginine chemotaxis in the archaeon Halobacterium salinarum , 1999, The EMBO journal.

[76]  N. Patenge,et al.  Extensive proteolysis inhibits high-level production of eukaryal G protein-coupled receptors in the archaeon Haloferax volcanii. , 1999, FEMS microbiology letters.

[77]  B. Snel,et al.  Conservation of gene order: a fingerprint of proteins that physically interact. , 1998, Trends in biochemical sciences.

[78]  D. Bray,et al.  Receptor clustering as a cellular mechanism to control sensitivity , 1998, Nature.

[79]  M. Alam,et al.  An Archaeal Aerotaxis Transducer Combines Subunit I Core Structures of Eukaryotic Cytochrome c Oxidase and Eubacterial Methyl-Accepting Chemotaxis Proteins , 1998, Journal of bacteriology.

[80]  M. Alam,et al.  Sensory Rhodopsin II Transducer HtrII Is Also Responsible for Serine Chemotaxis in the ArchaeonHalobacterium salinarum , 1998, Journal of bacteriology.

[81]  K. Jarrell,et al.  Further evidence to suggest that archaeal flagella are related to bacterial type IV pili. , 1998, Journal of molecular evolution.

[82]  Ann M Stock,et al.  Structural basis for methylesterase CheB regulation by a phosphorylation-activated domain. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[83]  D. Lipman,et al.  A genomic perspective on protein families. , 1997, Science.

[84]  G. Ordal,et al.  Activation of the CheA kinase by asparagine in Bacillus subtilis chemotaxis. , 1997, Microbiology.

[85]  B. P. McNamara,et al.  Coexpression of the long and short forms of CheA, the chemotaxis histidine kinase, by members of the family Enterobacteriaceae , 1997, Journal of bacteriology.

[86]  G. Ordal,et al.  CheC and CheD interact to regulate methylation of Bacillus subtilis methyl‐accepting chemotaxis proteins , 1996, Molecular microbiology.

[87]  J. Rudolph,et al.  Deletion analysis of the che operon in the archaeon Halobacterium salinarium. , 1996, Journal of molecular biology.

[88]  A. Shevchenko,et al.  Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. , 1996, Analytical chemistry.

[89]  J. Soppa,et al.  Characterization of the distal promoter element of halobacteria in vivo using saturation mutagenesis and selection , 1996, Molecular microbiology.

[90]  Stefan Dipl.-Ing. Schuster,et al.  Phosphorylation in halobacterial signal transduction. , 1995, The EMBO journal.

[91]  M. Engelhard,et al.  The primary structure of sensory rhodopsin II: a member of an additional retinal protein subgroup is coexpressed with its transducer, the halobacterial transducer of rhodopsin II. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[92]  J. S. Parkinson,et al.  Constitutively signaling fragments of Tsr, the Escherichia coli serine chemoreceptor , 1994, Journal of bacteriology.

[93]  J. Helmann,et al.  Dual chemotaxis signaling pathways in Bacillus subtilis: a sigma D-dependent gene encodes a novel protein with both CheW and CheY homologous domains , 1994, Journal of bacteriology.

[94]  J. Helmann,et al.  Chemotaxis in Bacillus subtilis requires either of two functionally redundant CheW homologs , 1994, Journal of bacteriology.

[95]  D. Henner,et al.  Chemotactic methyltransferase promotes adaptation to repellents in Bacillus subtilis. , 1993, The Journal of biological chemistry.

[96]  D. Oesterhelt,et al.  Sensory rhodopsin‐controlled release of the switch factor fumarate in Halobacterium salinarium , 1993, Molecular microbiology.

[97]  Stephan C. Schuster,et al.  Assembly and function of a quaternary signal transduction complex monitored by surface plasmon resonance , 1993, Nature.

[98]  R. Bourret,et al.  Purification and characterization of Bacillus subtilis CheY. , 1993, Biochemistry.

[99]  J. Kirby,et al.  Chemotactic methylesterase promotes adaptation to high concentrations of attractant in Bacillus subtilis. , 1993, The Journal of biological chemistry.

[100]  D. Oesterhelt,et al.  The methyl‐accepting transducer protein HtrI is functionally associated with the photoreceptor sensory rhodopsin I in the archaeon Halobacterium salinarium. , 1993, The EMBO journal.

[101]  L. Shapiro,et al.  Polar location of the chemoreceptor complex in the Escherichia coli cell. , 1993, Science.

[102]  J. Spudich,et al.  Primary structure of an archaebacterial transducer, a methyl-accepting protein associated with sensory rhodopsin I. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[103]  Frederick W. Dahlquist,et al.  Assembly of an MCP receptor, CheW, and kinase CheA complex in the bacterial chemotaxis signal transduction pathway , 1992, Cell.

[104]  P. Matsumura,et al.  Bacterial chemotaxis signaling complexes: formation of a CheA/CheW complex enhances autophosphorylation and affinity for CheY. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[105]  J. Stock,et al.  Reconstitution of the bacterial chemotaxis signal transduction system from purified components. , 1991, The Journal of biological chemistry.

[106]  F. Dahlquist,et al.  Mutations that affect control of the methylesterase activity of CheB, a component of the chemotaxis adaptation system in Escherichia coli , 1990, Journal of bacteriology.

[107]  M. Dyall-Smith,et al.  A plasmid vector with a selectable marker for halophilic archaebacteria , 1990, Journal of bacteriology.

[108]  D. Oesterhelt,et al.  Signal transduction in Halobacterium depends on fumarate. , 1990, The EMBO journal.

[109]  A. Lupas,et al.  Phosphorylation of an N-terminal regulatory domain activates the CheB methylesterase in bacterial chemotaxis. , 1989, The Journal of biological chemistry.

[110]  M. Simon,et al.  Transmembrane signal transduction in bacterial chemotaxis involves ligand-dependent activation of phosphate group transfer. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[111]  C. A. Hasselbacher,et al.  Methyl-accepting protein associated with bacterial sensory rhodopsin I , 1988, Journal of bacteriology.

[112]  Kenji Oosawa,et al.  Phosphorylation of three proteins in the signaling pathway of bacterial chemotaxis , 1988, Cell.

[113]  D. Koshland,et al.  Homologies between the Salmonella typhimurium CheY protein and proteins involved in the regulation of chemotaxis, membrane protein synthesis, and sporulation. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[114]  J. S. Parkinson,et al.  Interactions between chemotaxis genes and flagellar genes in Escherichia coli , 1983, Journal of bacteriology.

[115]  D. Oesterhelt,et al.  Phototrophic growth of halobacteria and its use for isolation of photosynthetically-deficient mutants. , 1983, Annales de microbiologie.

[116]  M. Hunkapiller,et al.  Enzymatic deamidation of methyl-accepting chemotaxis proteins in Escherichia coli catalyzed by the cheB gene product. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[117]  J. S. Parkinson,et al.  Posttranslational processing of methyl-accepting chemotaxis proteins in Escherichia coli. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[118]  D. Oesterhelt,et al.  Anaerobic growth of halobacteria. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[119]  D. Koshland,et al.  A protein methylesterase involved in bacterial sensing. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[120]  J. S. Parkinson,et al.  Complementation analysis and deletion mapping of Escherichia coli mutants defective in chemotaxis , 1978, Journal of bacteriology.

[121]  J. Lanyi,et al.  Salt-dependent properties of proteins from extremely halophilic bacteria. , 1974, Bacteriological reviews.

[122]  J H CHRISTIAN,et al.  Solute concentrations within cells of halophilic and non-halophilic bacteria. , 1962, Biochimica et biophysica acta.

[123]  Johannes Goll,et al.  The protein network of bacterial motility , 2007 .

[124]  H. Zischka,et al.  The membrane proteome of Halobacterium salinarum , 2005, Proteomics.

[125]  F. Dahlquist,et al.  CheW Binding Interactions with CheA and Tar IMPORTANCE FOR CHEMOTAXIS SIGNALING IN ESCHERICHIA COLI* , 2002 .

[126]  W. Doolittle,et al.  Transformation methods for halophilic archaebacteria. , 1989, Canadian journal of microbiology.