Powering Mercury's dynamo

The presence of the global magnetic field of Mercury has implications for the interior structure of the planet and its thermal evolution. We use a thermal evolution model to explore the conditions under which excess entropy is available to drive a convective dynamo. The current state of the core is strongly affected by its sulfur concentration and the viscosity of the overlying mantle. A present‐day dynamo is difficult to achieve. The minimum rate of entropy production required to drive a dynamo is attained in only the most optimistic models, and requires present‐day mantle convection. An additional entropy source such as the addition of a radiogenic heat source in the core increases the probability of a present‐day dynamo. Given the uncertainty, more specific characterization of the planet's interior and magnetic field is required to alleviate ambiguities in the original Mariner 10 observations.

[1]  R. Jurgens,et al.  Large Longitude Libration of Mercury Reveals a Molten Core , 2007, Science.

[2]  Ulrich R. Christensen,et al.  A deep dynamo generating Mercury’s magnetic field , 2006, Nature.

[3]  A. Jephcoat,et al.  Potassium partitioning into molten iron alloys at high-pressure: Implications for Earth's core , 2006 .

[4]  G. Davies Mantle regulation of core cooling: A geodynamo without core radioactivity? , 2006 .

[5]  S. Hauck,,et al.  Sulfur's impact on core evolution and magnetic field generation on Ganymede , 2005 .

[6]  Jonathan M. Aurnou,et al.  A numerical study of dynamo action as a function of spherical shell geometry , 2005 .

[7]  M. Zuber,et al.  Thin shell dynamo models consistent with Mercury's weak observed magnetic field [rapid communication] , 2005 .

[8]  M. Gillan,et al.  Gross thermodynamics of two-component core convection , 2004 .

[9]  F. Nimmo,et al.  Thermal evolution of the Martian core: Implications for an early dynamo , 2004 .

[10]  R. Jeanloz,et al.  High‐pressure alloying of potassium and iron: Radioactivity in the Earth's core? , 2003 .

[11]  M. Gillan,et al.  Can the Earth's dynamo run on heat alone? , 2003 .

[12]  P. Roberts,et al.  Energy fluxes and ohmic dissipation in the earth's core , 2003 .

[13]  V. Murthy,et al.  Experimental evidence that potassium is a substantial radioactive heat source in planetary cores , 2003, Nature.

[14]  Geoffrey D. Price,et al.  The influence of potassium on core and geodynamo evolution , 2003 .

[15]  R. Phillips,et al.  Internal and tectonic evolution of Mercury , 2003 .

[16]  B. Wood,et al.  Potassium in the Earth’s core? , 2002 .

[17]  Jean-Paul Poirier,et al.  The age of the inner core , 2001 .

[18]  G. Schubert,et al.  Sulfur in Mercury's Core? , 2001 .

[19]  Y. Fei,et al.  Structure type and bulk modulus of Fe3S, a new iron-sulfur compound , 2000 .

[20]  Jianzhong Zhang,et al.  New experimental observations on the anhydrous solidus for peridotite KLB‐1 , 2000 .

[21]  F. Nimmo,et al.  Influence of early plate tectonics on the thermal evolution and magnetic field of Mars , 2000 .

[22]  Mohamed Mezouar,et al.  Density measurements of liquid Fe‐S alloys at high‐pressure , 2000 .

[23]  A. C. Cook,et al.  Topography of lobate scarps on Mercury: New constraints on the planet's contraction , 1998 .

[24]  A. Tarantola,et al.  A logarithmic equation of state , 1998 .

[25]  Y. Fei,et al.  High-Pressure Iron-Sulfur Compound, Fe3S2, and Melting Relations in the Fe-FeS System , 1997, Science.

[26]  J. Mitrovica,et al.  Radial profile of mantle viscosity: Results from the joint inversion of convection and postglacial , 1997 .

[27]  R. Boehler Experimental constraints on melting conditions relevant to core formation , 1996 .

[28]  W. Peltier,et al.  Mantle viscosity from the simultaneous inversion of multiple data sets pertaining to postglacial rebound , 1996 .

[29]  H. Mao,et al.  Structure and Density of FeS at High Pressure and High Temperature and the Internal Structure of Mars , 1995, Science.

[30]  V. Solomatov,et al.  Scaling of temperature‐ and stress‐dependent viscosity convection , 1995 .

[31]  W. Anderson,et al.  An equation of state for liquid iron and implications for the Earth's core , 1994 .

[32]  G. Schubert,et al.  Magnetism and thermal evolution of the terrestrial planets , 1983 .

[33]  D. Gubbins,et al.  Thermal evolution of the Earth's core , 1979 .

[34]  N. Ness Mercury: Magnetic field and interior , 1978 .

[35]  G. Schubert,et al.  Implications of an internal dynamo for the thermal history of Mercury , 1976 .

[36]  N. Ness,et al.  The magnetic field of Mercury, 1 , 1975 .

[37]  Robert G. Strom,et al.  Tectonism and volcanism on Mercury , 1975 .

[38]  S. Solomon Some aspects of core formation in Mercury , 1975 .

[39]  S. Solomon,et al.  Mercury - Internal structure and thermal evolution , 1974 .

[40]  JOHN S. Lewis Metal/silicate fractionation in the solar system , 1972 .

[41]  L. Grossman Condensation in the primitive solar nebula , 1972 .

[42]  D. Stevenson,et al.  Thermal Aspects of a Lunar Origin by Giant Impact , 2000 .

[43]  M. Ross,et al.  Mercury's thermal history and the generation of its magnetic field , 1988 .