Mean velocity of edge and screw dislocation groups in neutron-irradiated copper single crystals†

During deformation of n-irradiated Cu single crystals (n-dose 2.6 × 1018 cm−2) in the yield region at room temperature the development of slip bands on several surfaces around the crystal is recorded by high-speed cinematography. From microphotometric evaluation of the films (rate of growth of slip bands in length and in height) the mean velocity of dislocation groups, the distances of dislocations in the moving groups, and their average angle to the crystal surface is obtained. Velocities of screw (v⊙) and edge (v⊥) dislocation groups at different surfaces indicate an effect of the surface (“image forces”). An increase of deformation rate by a factor of 21 causes an increase of v⊙ and v⊥ by only a factor of six. Without surface effects v⊙/v⊥ ≈ 4. Wahrend der Verformung von n-bestrahlten Cu-Einkristallen (n-Dosis 2,6 × 1018 cm−2) im Fliesbereich bei Raumtemperatur wird die Entwicklung von Gleitbandern auf mehreren Flachen rund um den Kristall mit Hochfrequenz-Kinematographie registriert. Die mikrophotometrische Auswertung der Filme (Wachstumsgeschwindigkeit der Gleitbander in die Lange und Hohe) ergibt die mittlere Geschwindigkeit der Versetzungsgruppen, die Versetzungsabstande in bewegten Gruppen und ihren mittleren Winkel gegen die Kristalloberflache. Die Geschwindigkeiten von Schrauben- und Stufenversetzungsgruppen (v⊙ bzw. v⊥) lassen einen Einflus der Oberflache („Bildkrafte”) erkennen. Eine Zunahme der Dehngeschwindigkeit um den Faktor 21 hat eine Zunahme von v⊙ und v⊥ nur um den Faktor sechs zur Folge. Ohne Oberflacheneffekt ist v⊙/v⊥ ≈ 4.

[1]  C. Schwink,et al.  Investigations of the yield region of concentrated CuGe and CuZn single crystals—I. Critical resolved shear stress, slip line formation and the true strain rate , 1977 .

[2]  F. Young,et al.  Effect of temperature on irradiation‐induced dislocation loops in copper , 1977 .

[3]  J. Lothe,et al.  Image forces and dislocation configurations as seen by the lang X-ray technique , 1977 .

[4]  J. Siegwarth Polarization and dielectric constant of SrTiO3 glass ceramics at low temperatures , 1977 .

[5]  R. Rodloff,et al.  Application of an “evolution strategy” to calculate static and dynamic dislocation group configurations , 1976 .

[6]  O. Lohne On the failure of Schmid's law , 1974 .

[7]  H. Neuhäuser,et al.  Determination of the Velocity and Local Density of Mobile Dislocations Within Slip Bands in Neutron‐Irradiated Copper by High Speed Cinematography , 1974 .

[8]  H. Neuhäuser,et al.  Study of slip band development on neutron-irradiated copper single crystals by high speed cinematography , 1973 .

[9]  U. Essmann,et al.  Slip in copper crystals following weak neutron bombardment , 1973 .

[10]  O. Lohne Dislocation motion, reactions, and multiplication in a stressed aluminium single crystal , 1973 .

[11]  B. Eyre Transmission electron microscope studies of point defect clusters in fcc and bcc metals , 1973 .

[12]  R. Arsenault A dynamic dislocation pile-up in neutron-irradiated metals , 1971 .

[13]  H. Mughrabi Some consequences of surface and size effects in plastically deformed copper single crystals , 1971 .

[14]  M. Makin The mechanism of slip band growth in irradiated crystals , 1970 .

[15]  John Arthur Simmons,et al.  FUNDAMENTAL ASPECTS OF DISLOCATION THEORY. VOLUME II. Conference Held at Gaithersburg, Maryland, April 21--25, 1969. , 1970 .

[16]  I. R. Harris,et al.  The 197Au Mössbauer Isomer Shifts of Some AuSn Alloys , 1970 .

[17]  H. Mughrabi Investigations of Plastically Deformed Copper Single Crystals in the Stress‐Applied State. I. A Study of the Dislocation Behaviour in the Surface Region and in the Bulk , 1970 .

[18]  A. Foreman,et al.  A mechanism for the sweeping-up of loops by glide dislocations during deformation , 1969 .

[19]  M. Saxlová Activation energy for elastic interaction between Frank dislocation loops and glide dislocations in f.c.c. Metals , 1969 .

[20]  M. Makin The obstacles responsible for the hardening of neutron irradiated copper crystals , 1968 .

[21]  J. T. Fourie The flow stress gradient between the surface and centre of deformed copper single crystals , 1968 .

[22]  H. Neuhäuser Untersuchungen zur aktiven Kristallänge im Fließbereich neutronenbestrahlter Kupfereinkristalle. II. Die aktive Kristallänge , 1968 .

[23]  M. Rühle Radiation Hardening of Neutron-Irradiated Copper Single Crystals. I. Experimental Results , 1968 .

[24]  H. Neuhäuser Untersuchungen zur aktiven Kristallänge im Fließbereich neutronenbestrahlter Kupfereinkristalle. I. Die Ausbildung der Gleitbänder , 1968 .

[25]  J. F. Hamilton Transmission electron microscopy of twinned silver bromide crystals , 1967 .

[26]  J. V. Sharp Deformation of neutron-irradiated copper single crystals , 1967 .

[27]  M. Rühle Elektronenmikroskopie kleiner Fehlstellenagglomerate in bestrahlten Metallen I. Theorie des Kontrastes und experimentelle Methoden zur Ermittlung des Defekttyps , 1967 .

[28]  C. Schwink,et al.  On the Strengthening Mechanism in Neutron Irradiated Copper Single Crystals. I. On Experiments Concerning Strain Rate Changes Critical Comments on the Preceding Paper of T. J. Koppenaal and R. J. Arsenault , 1966 .

[29]  Christoph Schwink Über den Begriff „aktives Gleitvolumen'' und dessen Bedeutung , 1966 .

[30]  J. Washburn INTERSECTION CROSS SLIP , 1965 .

[31]  M. Makin,et al.  MICROSTRAIN IN NEUTRON IRRADIATED COPPER CRYSTALS , 1965 .

[32]  M. Makin,et al.  A Model of “Lattice” Hardening in Irradiated Copper Crystals with the External Characteristics of “Source” Hardening , 1965 .

[33]  M. Makin The thermal activation of slip in neutron irradiated copper , 1964 .

[34]  A. Seeger,et al.  Verfestigungsverhalten neutronenbestrahlter Metalle. II. Temperaturwechselversuche und Gleitlinienbeobachtungen an Kupfereinkristallen , 1964 .

[35]  Christoph Schwink,et al.  Untersuchungen des Fließbereichs neutronenbestrahlter Kupfereinkristalle. II. Kinematographische Messung der Abgleitgeschwinidigkeit nichtangelassener und angelassener Proben , 1964 .

[36]  Christoph Schwink Untersuchungen des Fließbereichs neutronenbestrahlter Kupfereinkristalle III. Die charakteristischen Größen der Gleithindernisse, insbesondere die Aktivierungsenergie† , 1964 .

[37]  R. E. Jamison,et al.  Radiation hardening of copper single crystals , 1960 .

[38]  A. Seeger,et al.  CXXXII. The generation of lattice defects by moving dislocations, and its application to the temperature dependence of the flow-stress of F.C.C. crystals , 1955 .

[39]  P. Haasen,et al.  Kinematographie von gleitlinien auf Al-Einkristallen , 1953 .