Crossing-Preserving Coherence-Enhancing Diffusion on Invertible Orientation Scores

Many image processing problems require the enhancement of crossing elongated structures. These problems cannot easily be solved by commonly used coherence-enhancing diffusion methods. Therefore, we propose a method for coherence-enhancing diffusion on the invertible orientation score of a 2D image. In an orientation score, the local orientation is represented by an additional third dimension, ensuring that crossing elongated structures are separated from each other. We consider orientation scores as functions on the Euclidean motion group, and use the group structure to apply left-invariant diffusion equations on orientation scores. We describe how we can calculate regularized left-invariant derivatives, and use the Hessian to estimate three descriptive local features: curvature, deviation from horizontality, and orientation confidence. These local features are used to adapt a nonlinear coherence-enhancing, crossing-preserving, diffusion equation on the orientation score. We propose two explicit finite-difference schemes to apply the nonlinear diffusion in the orientation score and provide a stability analysis. Experiments on both artificial and medical images show that preservation of crossings is the main advantage compared to standard coherence-enhancing diffusion. The use of curvature leads to improved enhancement of curves with high curvature. Furthermore, the use of deviation from horizontality makes it feasible to reduce the number of sampled orientations while still preserving crossings.

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[3]  Deborah Walters,et al.  Selection of image primitives for general-purpose visual processing , 1987, Comput. Vis. Graph. Image Process..

[4]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Mark Nitzberg,et al.  Nonlinear Image Filtering with Edge and Corner Enhancement , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Rüdiger von der Heydt,et al.  A computational model of neural contour processing: Figure-ground segregation and illusory contours , 1993, 1993 (4th) International Conference on Computer Vision.

[7]  G. Cottet,et al.  Image processing through reaction combined with nonlinear diffusion , 1993 .

[8]  Hans Knutsson,et al.  Signal processing for computer vision , 1994 .

[9]  D. Mumford Elastica and Computer Vision , 1994 .

[10]  Lance R. Williams,et al.  Stochastic Completion Fields: A Neural Model of Illusory Contour Shape and Salience , 1995, Neural Computation.

[11]  Jean-Pierre Antoine,et al.  Two-dimensional directional wavelets and the scale-angle representation , 1996, Signal Process..

[12]  Joachim Weickert,et al.  Anisotropic diffusion in image processing , 1996 .

[13]  Max A. Viergever,et al.  Invertible Orientation Bundles on 2D Scalar Images , 1997, Scale-Space.

[14]  Max A. Viergever,et al.  Scale-Space Theory in Computer Vision , 1997 .

[15]  Yoshinobu Sato,et al.  Orientation space filtering for multiple orientation line segmentation , 1998, Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No.98CB36231).

[16]  Pierre Vandergheynst,et al.  Directional Wavelets Revisited: Cauchy Wavelets and Symmetry Detection in Patterns , 1999 .

[17]  D. Tuch High Angular Resolution Diffusion Imaging of the Human Brain , 1999 .

[18]  E. Candès,et al.  Ridgelets: a key to higher-dimensional intermittency? , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[19]  Michael Unser,et al.  Splines: a perfect fit for signal and image processing , 1999, IEEE Signal Process. Mag..

[20]  E. Candès,et al.  Curvelets: A Surprisingly Effective Nonadaptive Representation for Objects with Edges , 2000 .

[21]  Larry L. Schumaker,et al.  Curve and Surface Fitting: Saint-Malo 1999 , 2000 .

[22]  Emmanuel J. Candès,et al.  The curvelet transform for image denoising , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[23]  S. Zucker,et al.  The curve indicator random field , 2001 .

[24]  M. Van Ginkel,et al.  Image analysis using orientation space based on steerable filters , 2002 .

[25]  Hanno Scharr,et al.  A Scheme for Coherence-Enhancing Diffusion Filtering with Optimized Rotation Invariance , 2002, J. Vis. Commun. Image Represent..

[26]  Remco Duits,et al.  Image processing via shift-twist invariant operations on orientation bundle functions , 2004, ICPR 2004.

[27]  Joachim Weickert,et al.  Coherence-Enhancing Diffusion Filtering , 1999, International Journal of Computer Vision.

[28]  Maurice Duits,et al.  A functional Hilbert space approach to the theory of wavelets , 2004 .

[29]  Lance R. Williams,et al.  Euclidean Group Invariant Computation of Stochastic Completion Fields Using Shiftable-Twistable Functions , 2000, Journal of Mathematical Imaging and Vision.

[30]  E. Barth,et al.  Analysing superimposed oriented patterns , 2004, 6th IEEE Southwest Symposium on Image Analysis and Interpretation, 2004..

[31]  Luc Florack,et al.  On the Axioms of Scale Space Theory , 2004, Journal of Mathematical Imaging and Vision.

[32]  Max A. Viergever,et al.  Invertible Apertured Orientation Filters in Image Analysis , 1999, International Journal of Computer Vision.

[33]  J. Koenderink,et al.  Cartesian differential invariants in scale-space , 1993, Journal of Mathematical Imaging and Vision.

[34]  Remco Duits Perceptual organization in image analysis : a mathematical approach based on scale, orientation and curvature , 2005 .

[35]  Giovanna Citti,et al.  A Cortical Based Model of Perceptual Completion in the Roto-Translation Space , 2006, Journal of Mathematical Imaging and Vision.

[36]  Wiro J. Niessen,et al.  Multiscale Vessel Enhancing Diffusion in CT Angiography Noise Filtering , 2005, IPMI.

[37]  Michael Felsberg,et al.  Channel smoothing: efficient robust smoothing of low-level signal features , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[38]  Joachim Weickert,et al.  From Tensor-Driven Diffusion to Anisotropic Wavelet Shrinkage , 2006, ECCV.

[39]  David Tschumperlé,et al.  Fast Anisotropic Smoothing of Multi-Valued Images using Curvature-Preserving PDE's , 2006, International Journal of Computer Vision.

[40]  Max A. Viergever,et al.  Vessel enhancing diffusion: A scale space representation of vessel structures , 2006, Medical Image Anal..

[41]  Hanno Scharr Diffusion-Like Reconstruction Schemes from Linear Data Models , 2006, DAGM-Symposium.

[42]  Bart M. ter Haar Romeny,et al.  Detection of Electrophysiology Catheters in Noisy Fluoroscopy Images , 2006, MICCAI.

[43]  R. Duits,et al.  Left-invariant Stochastic Evolution Equations on SE(2) and its Applications to Contour Enhancement and Contour Completion via Invertible Orientation Scores , 2007, 0711.0951.

[44]  van Ma Markus Almsick,et al.  Context models of lines and contours , 2007 .

[45]  C. S. Shaw,et al.  Network distribution of mitochondria and lipid droplets in human muscle fibres , 2007, Histochemistry and Cell Biology.

[46]  Bernhard Burgeth,et al.  Scale Spaces on Lie Groups , 2007, SSVM.

[47]  R. Duits,et al.  The explicit solutions of linear left-invariant second order stochastic evolution equations on the 2D-Euclidean motion group , 2007 .

[48]  Nikos Paragios,et al.  Scale Space and Variational Methods in Computer Vision, First International Conference, SSVM 2007, Ischia, Italy, May 30 - June 2, 2007, Proceedings , 2007, SSVM.

[49]  Remco Duits,et al.  Nonlinear Diffusion on the 2D Euclidean Motion Group , 2007, SSVM.

[50]  Remco Duits,et al.  Curvature Estimation for Enhancement of Crossing Curves , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[51]  B. H. Romeny,et al.  Invertible Orientation Scores as an Application of Generalized Wavelet Theory , 2007, Pattern Recognition and Image Analysis.

[52]  Rik Huiskes,et al.  Collagen orientation in periosteum and perichondrium is aligned with preferential directions of tissue growth , 2008, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[53]  E. Franken Enhancement of crossing elongated structures in images , 2008 .

[54]  Frank P T Baaijens,et al.  Intermittent straining accelerates the development of tissue properties in engineered heart valve tissue. , 2009, Tissue engineering. Part A.

[55]  R. Duits,et al.  Left-invariant parabolic evolutions on SE(2) and contour enhancement via invertible orientation scores. Part I: Linear left-invariant diffusion equations on SE(2) , 2010 .

[56]  R. Duits,et al.  Left-invariant parabolic evolutions on SE(2) and contour enhancement via invertible orientation scores. Part II: Non-linear left-invariant diffusions on invertible orientation scores , 2010 .

[57]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.