Layered Approx-Regular LDPC: Code Construction and Encoder/Decoder Design

Layered approximately regular (LAR) low-density parity-check (LDPC) codes are proposed, with which one single pair of encoder and decoder support various code lengths and code rates. The parity check matrices of LAR-LDPC codes have a "layer-block-cell" structure with some additional constraints. An encoder architecture is then designed for LAR-LDPC codes, by making two improvements to the Richardson-Urbanke approach: the forward substitution operation is entirely removed and the dense-matrix-vector multiplication is handled using feedback shift-registers. A partially parallel decoder architecture is also designed for LAR-LDPC codes, where a layered modified min-sum decoding algorithm is used to trade off among complexity, speed, and performance. More importantly, the interconnection network, which is inevitable for partially parallel decoders, has much lower hardware complexity compared with that for general LDPC codes. Both the encoder and decoder architectures are highly flexible in code length and code rate.

[1]  Steven W. McLaughlin,et al.  Optimal puncturing of irregular low-density parity-check codes , 2003, IEEE International Conference on Communications, 2003. ICC '03..

[2]  Evangelos Eleftheriou,et al.  Regular and irregular progressive edge-growth tanner graphs , 2005, IEEE Transactions on Information Theory.

[3]  Lei Yang,et al.  Code construction and FPGA implementation of a low-error-floor multi-rate low-density Parity-check code decoder , 2006, IEEE Transactions on Circuits and Systems I: Regular Papers.

[4]  Rüdiger L. Urbanke,et al.  Design of capacity-approaching irregular low-density parity-check codes , 2001, IEEE Trans. Inf. Theory.

[5]  Zongwang Li,et al.  Efficient encoding of quasi-cyclic low-density parity-check codes , 2005, IEEE Transactions on Communications.

[6]  D.E. Hocevar,et al.  A reduced complexity decoder architecture via layered decoding of LDPC codes , 2004, IEEE Workshop onSignal Processing Systems, 2004. SIPS 2004..

[7]  Mohammad M. Mansour,et al.  A 640-Mb/s 2048-bit programmable LDPC decoder chip , 2006, IEEE Journal of Solid-State Circuits.

[8]  Krishna R. Narayanan,et al.  Memory-efficient sum-product decoding of LDPC codes , 2004, IEEE Transactions on Communications.

[9]  X. Jin Factor graphs and the Sum-Product Algorithm , 2002 .

[10]  Rüdiger L. Urbanke,et al.  Efficient encoding of low-density parity-check codes , 2001, IEEE Trans. Inf. Theory.

[11]  Wayne Luk,et al.  A flexible hardware encoder for low-density parity-check codes , 2004, 12th Annual IEEE Symposium on Field-Programmable Custom Computing Machines.

[12]  Zhigang Cao,et al.  Flexible construction of irregular partitioned permutation LDPC codes with low, error floors , 2005, IEEE Commun. Lett..

[13]  Robert Michael Tanner,et al.  A recursive approach to low complexity codes , 1981, IEEE Trans. Inf. Theory.

[14]  Robert M. Gray,et al.  Toeplitz and Circulant Matrices: A Review , 2005, Found. Trends Commun. Inf. Theory.

[15]  Tong Zhang,et al.  Joint (3,k)-regular LDPC code and decoder/encoder design , 2004, IEEE Transactions on Signal Processing.

[16]  Achilleas Anastasopoulos,et al.  A comparison between the sum-product and the min-sum iterative detection algorithms based on density evolution , 2001, GLOBECOM'01. IEEE Global Telecommunications Conference (Cat. No.01CH37270).

[17]  William E. Ryan,et al.  Design of efficiently encodable moderate-length high-rate irregular LDPC codes , 2004, IEEE Transactions on Communications.

[18]  Dale E. Hocevar LDPC code construction with flexible hardware implementation , 2003, IEEE International Conference on Communications, 2003. ICC '03..

[19]  Marjan Karkooti,et al.  Semi-Parallel Architectures For Real-time LDPC Coding , 2004 .

[20]  A. J. Blanksby,et al.  A 690-mW 1-Gb/s 1024-b, rate-1/2 low-density parity-check code decoder , 2001, IEEE J. Solid State Circuits.

[21]  Kyeongcheol Yang,et al.  Quasi-cyclic LDPC codes for fast encoding , 2005, IEEE Transactions on Information Theory.

[22]  Steven W. McLaughlin,et al.  Rate-compatible puncturing of low-density parity-check codes , 2004, IEEE Transactions on Information Theory.

[23]  Amir H. Banihashemi,et al.  On implementation of min-sum algorithm for decoding low-density parity-check (LDPC) codes , 2002, Global Telecommunications Conference, 2002. GLOBECOM '02. IEEE.

[24]  Jun Heo,et al.  Analysis of scaling soft information on low density parity check code , 2003 .

[25]  Zongwang Li,et al.  Efficient encoding of quasi-cyclic low-density parity-check codes , 2006, IEEE Trans. Commun..

[26]  Daniel A. Spielman,et al.  Practical loss-resilient codes , 1997, STOC '97.

[27]  Pascal Urard,et al.  Based on 64800b LDPC and BCH Codes , 2005 .

[28]  Amir H. Banihashemi,et al.  On construction of rate-compatible low-density parity-check codes , 2004, 2004 IEEE International Conference on Communications (IEEE Cat. No.04CH37577).

[29]  Dale E. Hocevar Efficient encoding for a family of quasi-cyclic LDPC codes , 2003, GLOBECOM '03. IEEE Global Telecommunications Conference (IEEE Cat. No.03CH37489).

[30]  A. Blanksby,et al.  A 690-mW 1-Gb/s 1024-b, rate-1/2 low-density parity-check code decoder , 2001, IEEE J. Solid State Circuits.

[31]  Tong Zhang,et al.  Block-LDPC: a practical LDPC coding system design approach , 2005, IEEE Trans. Circuits Syst. I Regul. Pap..

[32]  J. Huisken,et al.  A scalable architecture for LDPC decoding , 2004, Proceedings Design, Automation and Test in Europe Conference and Exhibition.