Stand Characterization of Eucalyptus spp. Plantations in Uruguay Using Airborne Lidar Scanner Technology
暂无分享,去创建一个
Rafael M. Navarro-Cerrillo | M. Ángeles Varo-Martínez | Jorge Franco | Andrés Hirigoyen | Cecilia Rachid-Casnati | R. Navarro-Cerrillo | M. Varo-Martínez | A. Hirigoyen | C. Rachid-Casnati | J. Franco
[1] Joaquín Duque-Lazo,et al. Semi-automated stand delineation in Mediterranean Pinus sylvestris plantations through segmentation of LiDAR data: The influence of pulse density , 2017, Int. J. Appl. Earth Obs. Geoinformation.
[2] R. Congalton,et al. A comparison of unsupervised segmentation parameter optimization approaches using moderate- and high-resolution imagery , 2017 .
[3] E. Næsset,et al. Estimating tree height and tree crown properties using airborne scanning laser in a boreal nature reserve , 2002 .
[4] E. Næsset. Determination of mean tree height of forest stands using airborne laser scanner data , 1997 .
[5] Lin Cao,et al. Prediction of Diameter Distributions with Multimodal Models Using LiDAR Data in Subtropical Planted Forests , 2019, Forests.
[6] Brian Johnson,et al. Unsupervised image segmentation evaluation and refinement using a multi-scale approach , 2011 .
[7] Jorge García-Gutiérrez,et al. Comparison of ALS based models for estimating aboveground biomass in three types of Mediterranean forest , 2016 .
[8] R. Fournier,et al. Generalizing predictive models of forest inventory attributes using an area-based approach with airborne LiDAR data , 2015 .
[9] K. O’Hara,et al. The Stand: Revisiting a Central Concept in Forestry , 2013 .
[10] C. Silva,et al. Estimating Stand Height and Tree Density in Pinus taeda plantations using in-situ data, airborne LiDAR and k-Nearest Neighbor Imputation. , 2018, Anais da Academia Brasileira de Ciencias.
[11] Joanne C. White,et al. Remote Sensing Technologies for Enhancing Forest Inventories: A Review , 2016 .
[12] Limin Wang,et al. Optimal Segmentation Scale Parameter, Feature Subset and Classification Algorithm for Geographic Object-Based Crop Recognition Using Multisource Satellite Imagery , 2019, Remote. Sens..
[13] Xueliang Zhang,et al. Segmentation quality evaluation using region-based precision and recall measures for remote sensing images , 2015 .
[14] Guofan Shao,et al. Improving Lidar-based aboveground biomass estimation of temperate hardwood forests with varying site productivity , 2018 .
[15] Xuezhi Feng,et al. An Unsupervised Evaluation Method for Remotely Sensed Imagery Segmentation , 2012, IEEE Geoscience and Remote Sensing Letters.
[16] Dorin Comaniciu,et al. Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..
[17] Joanne C. White,et al. Integrating Landsat pixel composites and change metrics with lidar plots to predictively map forest structure and aboveground biomass in Saskatchewan, Canada , 2016 .
[18] S. Reutebuch,et al. Estimating forest canopy fuel parameters using LIDAR data , 2005 .
[19] Clement Atzberger,et al. On the Objectivity of the Objective Function - Problems with Unsupervised Segmentation Evaluation Based on Global Score and a Possible Remedy , 2017, Remote. Sens..
[20] Andrew T. Hudak,et al. Semi-Automated Delineation of Stands in an Even-Age Dominated Forest: A LiDAR-GEOBIA Two-Stage Evaluation Strategy , 2018, Remote. Sens..
[21] Ross Nelson,et al. How did we get here? An early history of forestry lidar1 , 2013 .
[22] F. Zhao,et al. Allometric equation choice impacts lidar-based forest biomass estimates: A case study from the Sierra National Forest, CA , 2012 .
[23] José Cristóbal Riquelme Santos,et al. Evolutionary feature selection to estimate forest stand variables using LiDAR , 2014, Int. J. Appl. Earth Obs. Geoinformation.
[24] Liviu Theodor Ene,et al. Statistical rigor in LiDAR-assisted estimation of aboveground forest biomass , 2016 .
[25] Antônio Miguel Vieira Monteiro,et al. Parameter selection for region‐growing image segmentation algorithms using spatial autocorrelation , 2006 .
[26] Agata Hoscilo,et al. Mapping Forest Type and Tree Species on a Regional Scale Using Multi-Temporal Sentinel-2 Data , 2019, Remote. Sens..
[27] A. Haara,et al. Tree Species Classification using Semi-automatic Delineation of Trees on Aerial Images , 2002 .
[28] Satoshi Tsuyuki,et al. Digital Aerial Photogrammetry for Uneven-Aged Forest Management: Assessing the Potential to Reconstruct Canopy Structure and Estimate Living Biomass , 2019, Remote. Sens..
[29] Chien-Shun Lo,et al. Growth-Competition-Based Stem Diameter and Volume Modeling for Tree-Level Forest Inventory Using Airborne LiDAR Data , 2013, IEEE Transactions on Geoscience and Remote Sensing.
[30] Ana Daría Ruiz-González,et al. Modelling the vertical distribution of canopy fuel load using national forest inventory and low-density airbone laser scanning data , 2017, PloS one.
[31] Michael A. Wulder,et al. Modeling Stand Height, Volume, and Biomass from Very High Spatial Resolution Satellite Imagery and Samples of Airborne LiDAR , 2013, Remote. Sens..
[32] Nicholas L. Crookston,et al. yaImpute: An R Package for kNN Imputation , 2008 .
[33] A. Huth,et al. Linking lidar and forest modeling to assess biomass estimation across scales and disturbance states , 2018 .
[34] Joanne C. White,et al. Three decades of forest structural dynamics over Canada's forested ecosystems using Landsat time-series and lidar plots , 2018, Remote Sensing of Environment.