Stand Characterization of Eucalyptus spp. Plantations in Uruguay Using Airborne Lidar Scanner Technology

[1]  Joaquín Duque-Lazo,et al.  Semi-automated stand delineation in Mediterranean Pinus sylvestris plantations through segmentation of LiDAR data: The influence of pulse density , 2017, Int. J. Appl. Earth Obs. Geoinformation.

[2]  R. Congalton,et al.  A comparison of unsupervised segmentation parameter optimization approaches using moderate- and high-resolution imagery , 2017 .

[3]  E. Næsset,et al.  Estimating tree height and tree crown properties using airborne scanning laser in a boreal nature reserve , 2002 .

[4]  E. Næsset Determination of mean tree height of forest stands using airborne laser scanner data , 1997 .

[5]  Lin Cao,et al.  Prediction of Diameter Distributions with Multimodal Models Using LiDAR Data in Subtropical Planted Forests , 2019, Forests.

[6]  Brian Johnson,et al.  Unsupervised image segmentation evaluation and refinement using a multi-scale approach , 2011 .

[7]  Jorge García-Gutiérrez,et al.  Comparison of ALS based models for estimating aboveground biomass in three types of Mediterranean forest , 2016 .

[8]  R. Fournier,et al.  Generalizing predictive models of forest inventory attributes using an area-based approach with airborne LiDAR data , 2015 .

[9]  K. O’Hara,et al.  The Stand: Revisiting a Central Concept in Forestry , 2013 .

[10]  C. Silva,et al.  Estimating Stand Height and Tree Density in Pinus taeda plantations using in-situ data, airborne LiDAR and k-Nearest Neighbor Imputation. , 2018, Anais da Academia Brasileira de Ciencias.

[11]  Joanne C. White,et al.  Remote Sensing Technologies for Enhancing Forest Inventories: A Review , 2016 .

[12]  Limin Wang,et al.  Optimal Segmentation Scale Parameter, Feature Subset and Classification Algorithm for Geographic Object-Based Crop Recognition Using Multisource Satellite Imagery , 2019, Remote. Sens..

[13]  Xueliang Zhang,et al.  Segmentation quality evaluation using region-based precision and recall measures for remote sensing images , 2015 .

[14]  Guofan Shao,et al.  Improving Lidar-based aboveground biomass estimation of temperate hardwood forests with varying site productivity , 2018 .

[15]  Xuezhi Feng,et al.  An Unsupervised Evaluation Method for Remotely Sensed Imagery Segmentation , 2012, IEEE Geoscience and Remote Sensing Letters.

[16]  Dorin Comaniciu,et al.  Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  Joanne C. White,et al.  Integrating Landsat pixel composites and change metrics with lidar plots to predictively map forest structure and aboveground biomass in Saskatchewan, Canada , 2016 .

[18]  S. Reutebuch,et al.  Estimating forest canopy fuel parameters using LIDAR data , 2005 .

[19]  Clement Atzberger,et al.  On the Objectivity of the Objective Function - Problems with Unsupervised Segmentation Evaluation Based on Global Score and a Possible Remedy , 2017, Remote. Sens..

[20]  Andrew T. Hudak,et al.  Semi-Automated Delineation of Stands in an Even-Age Dominated Forest: A LiDAR-GEOBIA Two-Stage Evaluation Strategy , 2018, Remote. Sens..

[21]  Ross Nelson,et al.  How did we get here? An early history of forestry lidar1 , 2013 .

[22]  F. Zhao,et al.  Allometric equation choice impacts lidar-based forest biomass estimates: A case study from the Sierra National Forest, CA , 2012 .

[23]  José Cristóbal Riquelme Santos,et al.  Evolutionary feature selection to estimate forest stand variables using LiDAR , 2014, Int. J. Appl. Earth Obs. Geoinformation.

[24]  Liviu Theodor Ene,et al.  Statistical rigor in LiDAR-assisted estimation of aboveground forest biomass , 2016 .

[25]  Antônio Miguel Vieira Monteiro,et al.  Parameter selection for region‐growing image segmentation algorithms using spatial autocorrelation , 2006 .

[26]  Agata Hoscilo,et al.  Mapping Forest Type and Tree Species on a Regional Scale Using Multi-Temporal Sentinel-2 Data , 2019, Remote. Sens..

[27]  A. Haara,et al.  Tree Species Classification using Semi-automatic Delineation of Trees on Aerial Images , 2002 .

[28]  Satoshi Tsuyuki,et al.  Digital Aerial Photogrammetry for Uneven-Aged Forest Management: Assessing the Potential to Reconstruct Canopy Structure and Estimate Living Biomass , 2019, Remote. Sens..

[29]  Chien-Shun Lo,et al.  Growth-Competition-Based Stem Diameter and Volume Modeling for Tree-Level Forest Inventory Using Airborne LiDAR Data , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[30]  Ana Daría Ruiz-González,et al.  Modelling the vertical distribution of canopy fuel load using national forest inventory and low-density airbone laser scanning data , 2017, PloS one.

[31]  Michael A. Wulder,et al.  Modeling Stand Height, Volume, and Biomass from Very High Spatial Resolution Satellite Imagery and Samples of Airborne LiDAR , 2013, Remote. Sens..

[32]  Nicholas L. Crookston,et al.  yaImpute: An R Package for kNN Imputation , 2008 .

[33]  A. Huth,et al.  Linking lidar and forest modeling to assess biomass estimation across scales and disturbance states , 2018 .

[34]  Joanne C. White,et al.  Three decades of forest structural dynamics over Canada's forested ecosystems using Landsat time-series and lidar plots , 2018, Remote Sensing of Environment.