Improved matrix transform method for the Riesz space fractional reaction dispersion equation

The Riesz space fractional reaction dispersion equation is a generalization of the classical reaction dispersion equation. In this paper, we develop a class of different form difference scheme for solving the Riesz space fractional reaction dispersion equation based on the parameter spline function and improved matrix transform method. Stability of the difference schemes are discussed by the matrix method. Finally, some numerical examples are given to show that the numerical results are in good agreement with our theoretical analysis.

[1]  Li Kexue,et al.  Laplace transform and fractional differential equations , 2011 .

[2]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[3]  Fawang Liu,et al.  THE FUNDAMENTAL AND NUMERICAL SOLUTIONS OF THE RIESZ SPACE-FRACTIONAL REACTION–DISPERSION EQUATION , 2008, The ANZIAM Journal.

[4]  I. Podlubny Fractional differential equations , 1998 .

[5]  O. Marichev,et al.  Fractional Integrals and Derivatives: Theory and Applications , 1993 .

[6]  Santanu Saha Ray,et al.  Analytical solution of a fractional diffusion equation by Adomian decomposition method , 2006, Appl. Math. Comput..

[7]  K. B. Oldham,et al.  The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order , 1974 .

[8]  Fawang Liu,et al.  Approximation of the Lévy-Feller advection-dispersion process by random walk and finite difference method , 2007, J. Comput. Phys..

[9]  Ahmed Alawneh,et al.  Variational iteration method for solving the space‐ and time‐fractional KdV equation , 2008 .

[10]  S. Momani,et al.  Solving systems of fractional differential equations using differential transform method , 2008 .

[11]  Fawang Liu,et al.  Galerkin finite element approximation of symmetric space-fractional partial differential equations , 2010, Appl. Math. Comput..

[12]  Louis A. Hageman,et al.  Iterative Solution of Large Linear Systems. , 1971 .

[13]  Fawang Liu,et al.  Stability and Convergence of an Implicit Difference Approximation for the Space Riesz Fractional Reaction-Dispersion Equation , 2007 .

[14]  Jingtang Ma,et al.  High-order finite element methods for time-fractional partial differential equations , 2011, J. Comput. Appl. Math..

[15]  Davod Khojasteh Salkuyeh,et al.  On the finite difference approximation to the convection-diffusion equation , 2006, Appl. Math. Comput..

[16]  Yubin Yan,et al.  Numerical analysis of a two-parameter fractional telegraph equation , 2013, J. Comput. Appl. Math..

[17]  M. Meerschaert,et al.  Finite difference approximations for fractional advection-dispersion flow equations , 2004 .

[18]  Shaowei Wang,et al.  Green’s function of time fractional diffusion equation and its applications in fractional quantum mechanics , 2009 .

[19]  Yu-xin Zhang,et al.  New numerical methods for the Riesz space fractional partial differential equations , 2012, Comput. Math. Appl..

[20]  E. Schutter,et al.  Anomalous Diffusion in Purkinje Cell Dendrites Caused by Spines , 2006, Neuron.

[21]  I. Turner,et al.  Numerical methods for fractional partial differential equations with Riesz space fractional derivatives , 2010 .

[22]  I. Turner,et al.  Numerical Approximation of a Fractional-In-Space Diffusion Equation, I , 2005 .

[23]  M. Saxton,et al.  Anomalous subdiffusion in fluorescence photobleaching recovery: a Monte Carlo study. , 2001, Biophysical journal.

[24]  A. M. Nagy,et al.  Numerical solution of two-sided space-fractional wave equation using finite difference method , 2011, J. Comput. Appl. Math..

[25]  I. I. Gorial,et al.  Numerical Methods for Fractional Reaction-Dispersion Equation with Riesz Space Fractional Derivative , 2011 .

[26]  Fawang Liu,et al.  Numerical Methods for the Variable-Order Fractional Advection-Diffusion Equation with a Nonlinear Source Term , 2009, SIAM J. Numer. Anal..

[27]  Fawang Liu,et al.  Numerical solution of the space fractional Fokker-Planck equation , 2004 .

[28]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[29]  M. Ganjiani,et al.  Solution of nonlinear fractional differential equations using homotopy analysis method , 2010 .