On the b-chromatic number of regular graphs without 4-cycle

The b-chromatic number of a graph G, denoted by @f(G), is the largest integer k for which G admits a proper coloring by k colors, such that each color class has a vertex that is adjacent to at least one vertex in each of the other color classes. We prove that, for each d-regular graph G which contains no 4-cycle, @f(G)>[email protected][email protected]?; and besides, if G has a triangle, then @f(G)>[email protected][email protected]?. Also, if G is a d-regular graph that contains no 4-cycle and diam(G)>=6, then @f(G)=d+1. Finally, we show that, for any d-regular graph G which does not contain 4-cycle and has vertex connectivity less than or equal to d+12, @f(G)=d+1. Moreover, when the vertex connectivity is less than 3d-34, we introduce a lower bound for the b-chromatic number in terms of the vertex connectivity.

[1]  Manouchehr Zaker,et al.  Bounds for the b-chromatic number of some families of graphs , 2006, Discret. Math..

[2]  Brice Effantin The b-chromatic number of power graphs of complete caterpillars , 2005 .

[3]  Johanne Cohen,et al.  On the b-continuity property of graphs , 2007, Discret. Appl. Math..

[4]  Hossein Hajiabolhassan,et al.  On the b-chromatic number of Kneser graphs , 2009, Discret. Appl. Math..

[5]  S. Francis Raj,et al.  Bounds for the b-chromatic number of vertex-deleted subgraphs and the extremal graphs , 2009, Electron. Notes Discret. Math..

[6]  David Manlove,et al.  The b-chromatic Number of a Graph , 1999, Discret. Appl. Math..

[7]  Hamamache Kheddouci,et al.  Exact values for the b-chromatic number of a power complete k-ary tree , 2005 .

[8]  Zsolt Tuza,et al.  On the b-Chromatic Number of Graphs , 2002, WG.

[9]  Sergio Cabello,et al.  On the b-chromatic number of regular graphs , 2011, Discret. Appl. Math..

[10]  Sandi Klavzar,et al.  The b-Chromatic Number of Cubic Graphs , 2010, Graphs Comb..

[11]  S. Francis Raj,et al.  Bounds for the b-chromatic number of G-v , 2013, Discret. Appl. Math..

[12]  Brice Effantin,et al.  The b-chromatic number of some power graphs , 2003 .

[13]  Dennis Saleh Zs , 2001 .

[14]  Ramin Javadi,et al.  On b-coloring of the Kneser graphs , 2009, Discret. Math..

[15]  Javier Marenco,et al.  On the b-Coloring of Cographs and P4-Sparse Graphs , 2009, Graphs Comb..

[16]  Mario Valencia-Pabon,et al.  On Approximating the B-Chromatic Number , 2003, Discret. Appl. Math..

[17]  Mekkia Kouider,et al.  The b -chromatic number of the cartesian product of two graphs , 2007 .

[18]  Chính T. Hoàng,et al.  On the b-dominating coloring of graphs , 2005, Discret. Appl. Math..

[19]  Frédéric Maffray,et al.  On b-colorings in regular graphs , 2009, Discret. Appl. Math..

[20]  Flavia Bonomo,et al.  On the b-coloring of P4-tidy graphs , 2011, Discret. Appl. Math..

[21]  Mekkia Kouider,et al.  Some bounds for the b-chromatic number of a grap , 2002, Discret. Math..