Review and construction of interatomic potentials for molecular dynamics studies of hydrogen embrittlement in Fe─C based steels

Reducing hydrogen embrittlement in the low‐cost Fe─C based steels have the potential to significantly impact the development of hydrogen energy technologies. Molecular dynamics studies of hydrogen interactions with Fe─C steels provide fundamental information about the behavior of hydrogen at microstructural length scales, although such studies have not been performed due to the lack of an Fe─C─H ternary interatomic potential. In this work, the literature on interatomic potentials related to the Fe─C─H systems are reviewed with the aim of constructing an Fe─C─H potential from the published binary potentials. We found that Fe─C, Fe─H, and C─H bond order potentials exist and can be combined to construct an Fe─C─H ternary potential. Therefore, we constructed two such Fe─C─H potentials and demonstrate that these ternary potentials can reasonably capture hydrogen effects on deformation characteristics and deformation mechanisms for a variety of microstructural variations of the Fe─C steels, including martensite that results from γ to α phase transformation, and pearlite that results from the eutectic formation of the Fe3C cementite compound.

[1]  Graeme Ackland,et al.  Computer simulation of point defect properties in dilute Fe—Cu alloy using a many-body interatomic potential , 1997 .

[2]  A. Stukowski Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool , 2009 .

[3]  C. Becquart,et al.  Dislocation interaction with C in α-Fe: A comparison between atomic simulations and elasticity theory , 2008, 0809.1520.

[4]  Eun-Ha Kim,et al.  The modified embedded-atom method interatomic potentials and recent progress in atomistic simulations , 2010 .

[5]  K. Nordlund,et al.  Molecular dynamics investigation of the interaction of dislocations with carbides in BCC Fe , 2015 .

[6]  R. Dronskowski,et al.  A molecular-dynamics study on carbon diffusion in face-centered cubic iron , 2014 .

[7]  Mark F. Horstemeyer,et al.  Structural, elastic, and thermal properties of cementite ( Fe 3 C ) calculated using a modified embedded atom method , 2012, 1202.3068.

[8]  C. Deo,et al.  Synergistic effects in hydrogen–helium bubbles , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[9]  Herbert F. Wang,et al.  Single Crystal Elastic Constants and Calculated Aggregate Properties. A Handbook , 1971 .

[10]  Xuejun Xu,et al.  Embedded-atom-method functions for the body-centered-cubic iron and hydrogen , 2001 .

[11]  Kai Nordlund,et al.  Analytical interatomic potential for modeling nonequilibrium processes in the W–C–H system , 2005 .

[12]  J. Bernholc,et al.  Nanomechanics of carbon tubes: Instabilities beyond linear response. , 1996, Physical review letters.

[13]  K. Nordlund,et al.  Atomistic simulations of stainless steels: a many-body potential for the Fe–Cr–C system , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[14]  C. Becquart,et al.  Comments on “Atomistic modeling of an Fe system with a small concentration of C” , 2014 .

[15]  C. Becker,et al.  Vacancy dissociation in body-centered cubic screw dislocation cores , 2017 .

[16]  F. D. Boer Cohesion in Metals: Transition Metal Alloys , 1989 .

[17]  Byeong-Joo Lee,et al.  Influence of Cu, Cr and C on the irradiation defect in Fe: A molecular dynamics simulation study , 2008 .

[18]  M. Allendorf,et al.  Molecular Dynamics Simulations of Hydrogen Diffusion in Aluminum , 2016 .

[19]  V. Gavriljuk,et al.  Effect of hydrogen on electronic structure of fcc iron in relation to hydrogen embrittlement of austenitic steels , 2007 .

[20]  E. Carter,et al.  Interatomic potentials for hydrogen in α –iron based on density functional theory , 2009 .

[21]  K. Nordlund,et al.  Interatomic Fe{H potential for irradiation and embrittlement simulations , 2016, 1604.02829.

[22]  D. Brenner,et al.  Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. , 1990, Physical review. B, Condensed matter.

[23]  O. Vinogradov,et al.  Modeling of hydrogen-assisted cracking in iron crystal using a quasi-Newton method , 2008, Journal of molecular modeling.

[24]  N. Mousseau,et al.  Diffusion properties of Fe-C systems studied by using kinetic activation-relaxation technique , 2016 .

[25]  J. Hirth,et al.  Effects of hydrogen on the properties of iron and steel , 1980 .

[26]  E. Carter,et al.  Carbon dissolution and diffusion in ferrite and austenite from first principles , 2003 .

[27]  A. Damask,et al.  Calculations of the energy and migration characteristics of carbon and nitrogen in α-iron and vanadium☆ , 1964 .

[28]  Kazunori Sato,et al.  Development of Fe-C interatomic potential for carbon impurities in α-iron , 2018, Computational Materials Science.

[29]  K. V. Van Vliet,et al.  Many-body potential for point defect clusters in Fe-C alloys. , 2007, Physical review letters.

[30]  G. A. Jeffrey,et al.  On the cementite structure , 1965 .

[31]  C. Sinclair,et al.  Molecular dynamics study of the ordering of carbon in highly supersaturated α -Fe , 2010 .

[32]  Kai Nordlund,et al.  Simulations of cementite: An analytical potential for the Fe-C system , 2009 .

[33]  W. Shu,et al.  Iron (Ruthenium and Osmium)-Hydrogen Systems , 2000 .

[34]  Chong-yu Wang,et al.  Generalized-stacking-fault energy and dislocation properties in bcc Fe: A first-principles study , 2004 .

[35]  G. Bonny,et al.  Interaction of carbon with vacancy and self-interstitial atom clusters in α-iron studied using metallic-covalent interatomic potential , 2011 .

[36]  R. Davidchack,et al.  Characterization of melting properties of several Fe-C model potentials , 2018 .

[37]  Zi-kui Liu,et al.  Elastic anisotropy of iron carbides with trigonal-prismatic coordination of C by Fe , 2015 .

[38]  N. Gunkelmann,et al.  Influence of C concentration on elastic moduli of α′-Fe1-xCx alloys , 2016 .

[39]  G. Henkelman,et al.  A climbing image nudged elastic band method for finding saddle points and minimum energy paths , 2000 .

[40]  B. Johansson,et al.  Generalized stacking fault energy of γ-Fe , 2016 .

[41]  D. Farkas,et al.  Interatomic potentials for carbon interstitials in metals and intermetallics , 2002 .

[42]  A. B. Sivak,et al.  Energetic, crystallographic and diffusion characteristics of hydrogen isotopes in iron , 2015 .

[43]  I. Abrikosov,et al.  Ab initio calculation of the solution enthalpies of substitutional and interstitial impurities in paramagnetic fcc Fe , 2014 .

[44]  R. A. Johnson,et al.  Interstitials and Vacancies in α Iron , 1964 .

[45]  N. Gunkelmann,et al.  Experimental and atomistic study of the elastic properties of α′ Fe–C martensite , 2012 .

[46]  D. Farkas,et al.  Atomistic simulations in the Fe–C system , 2009 .

[47]  C. Domain,et al.  Atomistic modeling of an Fe system with a small concentration of C , 2007 .

[48]  A. Serra,et al.  Carbon–vacancy complexes as traps for self-interstitial clusters in Fe–C alloys , 2013 .

[49]  S. Okamoto,et al.  Hydrogen embrittlement of a single crystal of iron on a nanometre scale at a crack tip by molecular dynamics , 1999 .

[50]  Byeong-Joo Lee,et al.  A modified embedded-atom method interatomic potential for the Fe–H system , 2006 .

[51]  J. Kučera,et al.  Diffusion in iron, iron solid solutions and steels , 1982 .

[52]  Dr.-Ing.B. Rumpf Thermochemical Data of Pure Substances , 1997 .

[53]  Aiichiro Nakano,et al.  A space-time-ensemble parallel nudged elastic band algorithm for molecular kinetics simulation , 2008, Comput. Phys. Commun..

[54]  C. Deo,et al.  Energetics of small hydrogen–vacancy clusters in bcc iron , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[55]  M. Allendorf,et al.  Temperature- and concentration-dependent hydrogen diffusivity in palladium from statistically-averaged molecular dynamics simulations , 2018 .

[56]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[57]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[58]  E. Carter,et al.  Diffusion of interstitial hydrogen into and through bcc Fe from first principles , 2004 .

[59]  D. Bacon,et al.  Computer simulation of carbon diffusion and vacancy–carbon interaction in α-iron , 2007 .

[60]  V. Rosato Comparative behavior of carbon in b.c.c. and f.c.c. iron , 1989 .

[61]  D. Bacon,et al.  Computer simulation of interaction of an edge dislocation with a carbon interstitial in α-iron and effects on glide , 2007 .

[62]  G. Ackland,et al.  Metallic-covalent interatomic potential for carbon in iron , 2008 .

[63]  Graeme Ackland,et al.  Development of an interatomic potential for phosphorus impurities in α-iron , 2004 .

[64]  Xiaowang W. Zhou,et al.  Atomistic simulation study of atomic size effects on B1 (NaCl), B2 (CsCl), and B3 (zinc-blende) crystal stability of binary ionic compounds , 2011 .

[65]  Yuzheng Wang,et al.  Atomic structure of the Fe/Fe3C interface with the Isaichev orientation in pearlite , 2017 .

[66]  P. Ghosh,et al.  Study of structural, mechanical and thermal properties of θ-Fe3C, o-Fe7C3 and h-Fe7C3 phases using molecular dynamics simulations , 2017 .

[67]  E. Carter,et al.  Erratum: Interatomic potentials for hydrogen in α -iron based on density functional theory [Phys. Rev. B 79, 174101 (2009)] , 2010 .

[68]  Seungwu Han,et al.  Development of new interatomic potentials appropriate for crystalline and liquid iron , 2003 .

[69]  C. Domain,et al.  Atomistic modeling of carbon Cottrell atmospheres in bcc iron , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[70]  C. Domain,et al.  Comparison of atomistic and elasticity approaches for carbon diffusion near line defects in α-iron , 2011 .

[71]  P. Erhart,et al.  Analytic bond-order potential for bcc and fcc iron—comparison with established embedded-atom method potentials , 2007 .

[72]  H. Urbassek,et al.  Free energies of austenite and martensite Fe–C alloys: an atomistic study , 2014 .

[73]  P. Entel,et al.  MARTENSITE-AUSTENITE TRANSITION AND PHONON DISPERSION CURVES OF FE1-XNIX STUDIED BY MOLECULAR-DYNAMICS SIMULATIONS , 1998 .

[74]  Farkas,et al.  Embedded-atom interatomic potentials for hydrogen in metals and intermetallic alloys. , 1996, Physical review. B, Condensed matter.

[75]  O. Vinogradov,et al.  Numerical tensile tests of BCC iron crystal with various amounts of hydrogen near the crack tip , 2006 .

[76]  G. Henkelman,et al.  Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points , 2000 .

[77]  D. Bacon,et al.  Computer simulation of the interaction of carbon atoms with self-interstitial clusters in α-iron , 2007 .

[78]  W. Jung,et al.  Modified embedded-atom method interatomic potentials for the Fe–Ti–C and Fe–Ti–N ternary systems , 2008 .

[79]  R. Mclellan,et al.  Carbon diffusivity in B.C.C. iron , 1993 .