Approximation properties for generalized q-Bernstein polynomials

In this paper, we introduce the generalized q-Bernstein polynomials based on the q-integers and we study approximation properties of these operators. In special case, we obtain Stancu operators or Phillips polynomials.

[1]  Sofiya Ostrovska,et al.  On the improvement of analytic properties under the limit q-Bernstein operator , 2006, J. Approx. Theory.

[2]  Sofiya Ostrovska,et al.  Convergence of Generalized Bernstein Polynomials , 2002, J. Approx. Theory.

[3]  Heping Wang,et al.  The rate of convergence of q-Bernstein polynomials for 0 , 2005, J. Approx. Theory.

[4]  George M. Phillips,et al.  A de Casteljau algorithm for generalized Bernstein polynomials , 1997 .

[5]  Sofiya Ostrovska,et al.  q-Bernstein polynomials and their iterates , 2003, J. Approx. Theory.

[6]  H. Gonska,et al.  Quantitative theorems on approximation by Bernstein-Stancu operators , 1984 .

[7]  V S Videnskii ON SOME CLASSES OF Q-PARAMETRIC POSITIVE OPERATORS , 2005 .

[8]  Tim N. T. Goodman,et al.  Convexity and generalized Bernstein polynomials , 1999, Proceedings of the Edinburgh Mathematical Society.

[9]  Philip J. Davis,et al.  A generalization of the Bernstein polynomials , 1999 .

[10]  Victor S. Videnskii On Some Classes of q-parametric Positive linear Operators , 2005 .

[11]  Zoltán Finta Direct and converse results for Stancu operator , 2002, Period. Math. Hung..

[12]  E. Cheney Introduction to approximation theory , 1966 .

[13]  Halil Oruç,et al.  Explicit factorization of the Vandermonde matrix , 2000 .

[14]  Heping Wang,et al.  Voronovskaya-type formulas and saturation of convergence for q-Bernstein polynomials for 0 , 2007, J. Approx. Theory.

[15]  Wang Heping Korovkin-type theorem and application , 2005 .