A computational and experimental study on the Jahn-Teller effect in the hydrated copper (II) ion. Comparisons with hydrated nickel (II) ions in aqueous solution and solid Tutton's salts
暂无分享,去创建一个
Ingmar Persson | Magnus Sandström | L. Pettersson | I. Persson | U. Wahlgren | Lars G. M. Pettersson | Ulf Wahlgren | B Beagley | A Eriksson | J Lindgren | E W White | M. Sandström | B. Beagley | J. Lindgren | A. Eriksson | E. W. White
[1] A. Hewat,et al. Temperature dependence of the structure and bonding in deuterated Cu(II) Tutton's salt , 1984 .
[2] W. S. Benedict,et al. Rotation‐Vibration Spectra of Deuterated Water Vapor , 1956 .
[3] G. Brown,et al. The structure of copper ammonium sulfate hexahydrate from neutron diffraction data , 1969 .
[4] Arne Holm,et al. Jahn-Teller Distortion in Copper(II) Complexes. Why Tetragonal Elongation Is Preferred to Tetragonal Compression. , 1979 .
[5] Magnus Sandström,et al. Neutron diffraction study of aqueous transition metal salt solutions by isomorphic substitution , 1981 .
[6] J. Enderby,et al. The structure of Cu2+ aqueous solutions , 1988 .
[7] E. N. Maslen,et al. Electron density in non‐ideal metal complexes. IV. Hexaaquametal(II) ammonium sulfates , 1988 .
[8] Z. Luz,et al. ESR and NMR in Aqueous and Methanol Solutions of Copper(II) Solvates. Temperature and Magnetic Field Dependence of Electron and Nuclear Spin Relaxation , 1972 .
[9] M. Magini,et al. Coordination Of Copper II In Aqueous CuSO4 Solution , 1983 .
[10] H. Oberhammer,et al. I. Hargittai, M. Hargittai (Eds.): The Electron Diffraction Technique, Part A von: Stereochemical Applications of Gas‐Phase Electron Diffraction, VCH Verlagsgesellschaft, Weinheim, Basel. Cambridge, New York 1988. 206 Seiten, Preis: DM 210,‐. , 1989 .
[11] B. Hathaway. A new look at the stereochemistry and electronic properties of complexes of the copper(II) ion , 1984 .
[12] SanoMitsuru,et al. POTENTIAL ENERGY SURFACE OF [Cu(H2O)6]2+ AND [Zn(H2O)6]2+ DERIVED FROM AB INITIO MO CALCULATIONS , 1980 .
[13] J. Lindgren,et al. Hydration of ions in aqueous solutions studied by infrared spectroscopy. II: Application , 1984 .
[14] L. Pettersson,et al. Effective core potential parameters for first‐ and second‐row atoms , 1987 .
[15] E. N. Maslen,et al. Crystal structure and electron density of diammonium hexaaquacopper(II) sulfate , 1988 .
[16] Toshio Yamaguchi,et al. X-Ray Diffraction Studies of the Structures of Hydrated Divalent Transition-Metal Ions in Aqueous Solution , 1976 .
[17] M. Sano,et al. The exafs study of Cu(II) aqueous solution using a position sensitive detector. , 1980 .
[18] J. Lindgren,et al. Hydration of ions in aqueous solutions studied by infrared spectroscopy. I: Method , 1984 .
[19] G. Greaves,et al. Detection of Mn–Br bonds in aqueous MnBr2 solution by X-ray absorption spectroscopy , 1983 .
[20] M. Magini. Coordination of copper(II). Evidence of the Jahn-Teller effect in aqueous perchlorate solutions , 1982 .
[21] 小杉 信博. B. K. Teo: EXAFS; Basic Principles and Data Analysis, Springer-Verlag, Berlin and Heidelberg, 1986, xviii+350ページ, 25×17cm, 18,198円 (Inorganic Chemistry Concepts, 9). , 1987 .
[22] B. Silver,et al. ESR of Cu2+(H2O)6. II. A quantitative study of the dynamic Jahn‐Teller effect in copper‐doped zinc Tutton's salt , 1974 .
[23] H. Ohtaki,et al. An X-Ray Diffraction Study of the Structure of Hydrated Copper(II) Ion in a Copper(II) Perchlorate Solution , 1974 .
[24] J. Lindgren,et al. A quantitative infrared spectroscopic method for the study of the hydration of ions in aqueous solutions , 1988 .
[25] L. Pettersson,et al. Effective core potential calculations using frozen orbitals. Applications to transition metals , 1983 .
[26] M. Eisenstein. Static deformation densities for cytosine and adenine. , 1988, Acta crystallographica. Section B, Structural science.
[27] J. B. Hastings,et al. Application of the EXAFS method to Jahn—Teller ions: static and dynamic behavior of Cu(H2O)62+ and Ci(H2O)2+6 in aqueous solution , 1981 .
[28] A. Veillard,et al. Gaussian basis sets for molecular wavefunctions containing third-row atoms , 1971 .
[29] E. N. Maslen,et al. The structures of Tutton's salts. I: Diammonium hexaaquamagnesium(II) sulfate , 1988 .
[30] R. A. Scott. [23] Measurement of metal-ligand distances by EXAFS , 1985 .
[31] W. Howells,et al. The dynamics of water molecules in ionic solution. II. Quasi-elastic neutron scattering and tracer diffusion studies of the proton and ion dynamics in concentrated Ni2+, Cu2+ and Nd3+ aqueous solutions , 1987 .
[32] M. Riley,et al. Interpretation of the temperature dependent g values of the Cu(H2O)2+6 ion in several host lattices using a dynamic vibronic coupling model , 1987 .
[33] M. C. Feiters,et al. Coordination chemistry of higher oxidation states. 19. Synthesis and properties of diphosphine and diarsine complexes of iron(IV), and iron K-edge EXAFS data on [Fe(o-C6H4(PMe2)2)2Cl2]n+[BF4]n (n = 0-2) , 1986 .
[34] I. Bersuker,et al. The Jahn-Teller Effect and Vibronic Interactions in Modern Chemistry , 1984 .
[35] H. Wakita,et al. An EXAFS Investigation of the Coordination Structure of Copper(II) Ions in Aqueous Cu(ClO4)2 and Methanolic CuCl2 Solutions , 1986 .
[36] J. Lindgren,et al. On the correlation between deuteron quadrupole coupling constants, O-H and O-D stretching frequencies and hydrogen-bond distances in solid hydrates , 1978 .
[37] E. C. Lingafelter,et al. The crystal structure of Tutton's salts. I. Zinc ammonium sulfate hexahydrate , 1964 .
[38] M. Nomura,et al. Concentration dependence of EXAFS and XANES of copper(II) perchlorate aqueous solution: comparison of solute structure in liquid and glassy states , 1988 .
[39] N. Skipper,et al. DIFFRACTION AND THE STUDY OF AQUA IONS , 1987 .