Vector Gaussian Multiple Description With Individual and Central Receivers

T multiple descriptions of a vector Gaussian source for individual and central receivers are investigated. The sum rate of the descriptions with covariance distortion measure constraints, in a positive semidefinite ordering, is exactly characterized. For two descriptions, the entire rate region is characterized. The key component of the solution is a novel information-theoretic inequality that is used to lower-bound the achievable multiple description rates. Jointly Gaussian descriptions are optimal in achieving the limiting rates. We also show the robustness of this description scheme: the distortions achieved are no larger when used to describe any non-Gaussian source with the same covariance matrix.

[1]  Suhas N. Diggavi,et al.  The worst additive noise under a covariance constraint , 2001, IEEE Trans. Inf. Theory.

[2]  Kellen Petersen August Real Analysis , 2009 .

[3]  L. Ozarow,et al.  On a source-coding problem with two channels and three receivers , 1980, The Bell System Technical Journal.

[4]  Hua Wang,et al.  Vector Gaussian Multiple Description with Individual and Central Receivers , 2006, ISIT.

[5]  Ram Zamir Gaussian codes and Shannon bounds for multiple descriptions , 1999, IEEE Trans. Inf. Theory.

[6]  Kannan Ramchandran,et al.  On compression for robust estimation in sensor networks , 2003, IEEE International Symposium on Information Theory, 2003. Proceedings..

[7]  Pramod Viswanath,et al.  Rate Region of the Quadratic Gaussian Two-Terminal Source-Coding Problem , 2005, ArXiv.

[8]  Kannan Ramchandran,et al.  n-channel symmetric multiple descriptions-part II:An achievable rate-distortion region , 2005, IEEE Transactions on Information Theory.

[9]  Kannan Ramchandran,et al.  n-channel symmetric multiple descriptions - part I: (n, k) source-channel erasure codes , 2004, IEEE Transactions on Information Theory.

[10]  Toby Berger,et al.  Robust Distributed Source Coding , 2006, IEEE Transactions on Information Theory.

[11]  N. J. A. Sloane,et al.  Multiple-description vector quantization with lattice codebooks: Design and analysis , 2001, IEEE Trans. Inf. Theory.

[12]  Vivek K. Goyal,et al.  Multiple description coding with many channels , 2003, IEEE Trans. Inf. Theory.

[13]  Abbas El Gamal,et al.  Achievable rates for multiple descriptions , 1982, IEEE Trans. Inf. Theory.

[14]  Fang-Wei Fu,et al.  On the rate-distortion region for multiple descriptions , 2002, IEEE Trans. Inf. Theory.

[15]  Vivek K. Goyal,et al.  Multiple description coding: compression meets the network , 2001, IEEE Signal Process. Mag..

[16]  Vivek K. Goyal,et al.  Multiple description vector quantization with a coarse lattice , 2002, IEEE Trans. Inf. Theory.

[17]  Vinay A. Vaishampayan,et al.  Asymptotic Analysis of Multiple Description Quantizers , 1998, IEEE Trans. Inf. Theory.

[18]  Fuzhen Zhang Matrix Theory: Basic Results and Techniques , 1999 .

[19]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[20]  Vinay A. Vaishampayan,et al.  Design of multiple description scalar quantizers , 1993, IEEE Trans. Inf. Theory.

[21]  N. J. A. Sloane,et al.  Asymmetric multiple description lattice vector quantizers , 2002, IEEE Trans. Inf. Theory.

[22]  Jaroslaw Domaszewicz,et al.  Design of entropy-constrained multiple-description scalar quantizers , 1994, IEEE Trans. Inf. Theory.

[23]  Rudolf Ahlswede,et al.  The rate-distortion region for multiple descriptions without excess rate , 1985, IEEE Trans. Inf. Theory.

[24]  Jack Edmonds,et al.  Submodular Functions, Matroids, and Certain Polyhedra , 2001, Combinatorial Optimization.

[25]  Noga Alon,et al.  The Probabilistic Method, Second Edition , 2004 .

[26]  Pramod Viswanath,et al.  Rate Region of the Quadratic Gaussian Two-Encoder Source-Coding Problem , 2005, IEEE Transactions on Information Theory.

[27]  David Tse,et al.  Multiaccess Fading Channels-Part I: Polymatroid Structure, Optimal Resource Allocation and Throughput Capacities , 1998, IEEE Trans. Inf. Theory.

[28]  Yasutada Oohama,et al.  Rate-distortion theory for Gaussian multiterminal source coding systems with several side informations at the decoder , 2005, IEEE Transactions on Information Theory.

[29]  Chao Tian,et al.  Universal multiple description scalar quantization: analysis and design , 2004, IEEE Transactions on Information Theory.

[30]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[31]  Toby Berger,et al.  New results in binary multiple descriptions , 1987, IEEE Trans. Inf. Theory.