A novel method for reliable and fast extraction of neuronal EEG/MEG oscillations on the basis of spatio-spectral decomposition

[1]  Christian Jutten,et al.  A Deflation Procedure for Subspace Decomposition , 2010, IEEE Transactions on Signal Processing.

[2]  Aapo Hyvärinen,et al.  Independent component analysis of short-time Fourier transforms for spontaneous EEG/MEG analysis , 2010, NeuroImage.

[3]  Jens Haueisen,et al.  Independent component analysis: comparison of algorithms for the investigation of surface electrical brain activity , 2009, Medical & Biological Engineering & Computing.

[4]  Seungjin Choi,et al.  Independent Component Analysis , 2009, Handbook of Natural Computing.

[5]  Guido Nolte,et al.  Understanding brain connectivity from EEG data by identifying systems composed of interacting sources , 2008, NeuroImage.

[6]  K.-R. Muller,et al.  Optimizing Spatial filters for Robust EEG Single-Trial Analysis , 2008, IEEE Signal Processing Magazine.

[7]  Matthew T. Sutherland,et al.  Recovery of correlated neuronal sources from EEG: The good and bad ways of using SOBI , 2005, NeuroImage.

[8]  G. Nolte,et al.  Analytic expansion of the EEG lead field for realistic volume conductors , 2005, Physics in medicine and biology.

[9]  Christopher J James,et al.  Independent component analysis for biomedical signals , 2005, Physiological measurement.

[10]  Andreas Ziehe,et al.  A Fast Algorithm for Joint Diagonalization with Non-orthogonal Transformations and its Application to Blind Source Separation , 2004, J. Mach. Learn. Res..

[11]  Klaus-Robert Müller,et al.  Feature Discovery in Non-Metric Pairwise Data , 2004, J. Mach. Learn. Res..

[12]  G. Buzsáki,et al.  Neuronal Oscillations in Cortical Networks , 2004, Science.

[13]  S. Makeig,et al.  Mining event-related brain dynamics , 2004, Trends in Cognitive Sciences.

[14]  Arnaud Delorme,et al.  EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis , 2004, Journal of Neuroscience Methods.

[15]  C. Joyce,et al.  Automatic removal of eye movement and blink artifacts from EEG data using blind component separation. , 2004, Psychophysiology.

[16]  J. Vrba,et al.  Signal processing in magnetoencephalography. , 2001, Methods.

[17]  M. Steriade Impact of network activities on neuronal properties in corticothalamic systems. , 2001, Journal of neurophysiology.

[18]  J. Martinerie,et al.  The brainweb: Phase synchronization and large-scale integration , 2001, Nature Reviews Neuroscience.

[19]  F. L. D. Silva,et al.  Event-related EEG/MEG synchronization and desynchronization: basic principles , 1999, Clinical Neurophysiology.

[20]  F. Varela,et al.  Perception's shadow: long-distance synchronization of human brain activity , 1999, Nature.

[21]  W. Drongelen,et al.  Localization of brain electrical activity via linearly constrained minimum variance spatial filtering , 1997, IEEE Transactions on Biomedical Engineering.

[22]  Eric Moulines,et al.  A blind source separation technique using second-order statistics , 1997, IEEE Trans. Signal Process..

[23]  D. Chakrabarti,et al.  A fast fixed - point algorithm for independent component analysis , 1997 .

[24]  Terrence J. Sejnowski,et al.  An Information-Maximization Approach to Blind Separation and Blind Deconvolution , 1995, Neural Computation.

[25]  Alan C. Evans,et al.  An MRI-Based Probabilistic Atlas of Neuroanatomy , 1994 .

[26]  G. Bydder,et al.  Magnetic Resonance Scanning and Epilepsy , 1994, NATO ASI Series.

[27]  Z J Koles,et al.  The quantitative extraction and topographic mapping of the abnormal components in the clinical EEG. , 1991, Electroencephalography and clinical neurophysiology.

[28]  D. Regan Human brain electrophysiology: Evoked potentials and evoked magnetic fields in science and medicine , 1989 .

[29]  Keinosuke Fukunaga,et al.  Introduction to Statistical Pattern Recognition , 1972 .