Optimal Transmission Ranges for Randomly Distributed Packet Radio Terminals

In multihop packet radio networks with randomly distributed terminals, the optimal transmission radii to maximize the expected progress of packets in desired directions are determined with a variety of transmission protocols and network configurations. It is shown that the FM capture phenomenon with slotted ALOHA greatly improves the expected progress over the system without capture due to the more limited area of possibly interfering terminals around the receiver. The (mini)slotted nonpersistent carrier-sense-multiple-access (CSMA) only slightly outperforms ALOHA, unlike the single-hop case (where a large improvement is available), because of a large area of "hidden" terminals and the long vulnerable period generated by them. As an example of an inhomogeneous terminal distribution, the effect of a gap in an otherwise randomly distributed terminal population on the expected progress of packets crossing the gap is considered. In this case, the disadvantage of using a large transmission radius is demonstrated.