Modal occupation measures and LMI relaxations for nonlinear switched systems control

This paper presents a linear programming approach for the optimal control of nonlinear switched systems where the control is the switching sequence. This is done by introducing modal occupation measures, which allow to relax the problem as a primal linear programming (LP) problem. Its dual linear program of Hamilton-Jacobi-Bellman inequalities is also characterized. The LPs are then solved numerically with a converging hierarchy of primal-dual moment-sum-of-squares (SOS) linear matrix inequalities (LMI). Because of the special structure of switched systems, we obtain a much more efficient method than could be achieved by applying standard moment/SOS LMI hierarchies for general optimal control problems.

[1]  Hector O. Fattorini,et al.  Infinite Dimensional Optimization and Control Theory: References , 1999 .

[2]  Frédéric Messine,et al.  Efficient upper and lower bounds for global mixed-integer optimal control , 2015, J. Glob. Optim..

[3]  Christos G. Cassandras,et al.  Optimal control of a class of hybrid systems , 2001, IEEE Trans. Autom. Control..

[4]  Frédéric Kratz,et al.  An Optimal Control Approach for Hybrid Systems , 2003, Eur. J. Control.

[5]  Richard Bellman,et al.  Introduction to the mathematical theory of control processes , 1967 .

[6]  John L. Casti Introduction to the Mathematical Theory of Control Processes, Volume I: Linear Equations and Quadratic Criteria, Volume II: Nonlinear Processes , 1978, IEEE Transactions on Systems, Man, and Cybernetics.

[7]  Jamal Daafouz,et al.  Dynamic output feedback Hinfinity control of switched linear systems , 2011, Autom..

[8]  A. Rantzer,et al.  Optimal control of hybrid systems , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[9]  Frédéric Bonnans,et al.  Bocop - A collection of examples , 2012 .

[10]  F. Rampazzo,et al.  Filippov's and Filippov–Ważewski's Theorems on Closed Domains , 2000 .

[11]  Dmitry Batenkov,et al.  Complete algebraic reconstruction of piecewise-smooth functions from Fourier data , 2012, Math. Comput..

[12]  Hyunjoong Kim,et al.  Functional Analysis I , 2017 .

[13]  Jean B. Lasserre,et al.  Convergent SDP-Relaxations for Polynomial Optimization with Sparsity , 2006, ICMS.

[14]  A. Morse,et al.  Basic problems in stability and design of switched systems , 1999 .

[15]  Raymond A. DeCarlo,et al.  Optimal control of switching systems , 2005, Autom..

[16]  R. Vinter Convex duality and nonlinear optimal control , 1993 .

[17]  J. Lofberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004, 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No.04CH37508).

[18]  Panos J. Antsaklis,et al.  Results and Perspectives on Computational Methods for Optimal Control of Switched Systems , 2003, HSCC.

[19]  Jamal Daafouz,et al.  Optimal switching control design for polynomial systems: an LMI approach , 2013, 52nd IEEE Conference on Decision and Control.

[20]  Arkadi Nemirovski,et al.  Lectures on modern convex optimization - analysis, algorithms, and engineering applications , 2001, MPS-SIAM series on optimization.

[21]  V. Borkar,et al.  A unified framework for hybrid control: model and optimal control theory , 1998, IEEE Trans. Autom. Control..

[22]  R. Decarlo,et al.  Perspectives and results on the stability and stabilizability of hybrid systems , 2000, Proceedings of the IEEE.

[23]  Hai Lin,et al.  Switched Linear Systems: Control and Design , 2006, IEEE Transactions on Automatic Control.

[24]  Richard B. Vinter,et al.  The Equivalence of Strong and Weak Formulations for Certain Problems in Optimal Control , 1978 .

[25]  H. Sussmann,et al.  A maximum principle for hybrid optimal control problems , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[26]  Erik I. Verriest,et al.  Gradient Descent Approach to Optimal Mode Scheduling in Hybrid Dynamical Systems , 2008 .

[27]  Didier Henrion,et al.  GloptiPoly 3: moments, optimization and semidefinite programming , 2007, Optim. Methods Softw..

[28]  Denis Arzelier,et al.  Moment LMI approach to LTV impulsive control , 2013, 52nd IEEE Conference on Decision and Control.

[29]  Alberto Bemporad,et al.  Optimal control of continuous-time switched affine systems , 2006, IEEE Transactions on Automatic Control.

[30]  Kellen Petersen August Real Analysis , 2009 .

[31]  J. Lasserre Moments, Positive Polynomials And Their Applications , 2009 .

[32]  Patrizio Colaneri,et al.  Dynamic Output Feedback Control of Switched Linear Systems , 2008, IEEE Transactions on Automatic Control.

[33]  Johan Efberg,et al.  YALMIP : A toolbox for modeling and optimization in MATLAB , 2004 .

[34]  Didier Henrion,et al.  Mean Squared Error Minimization for Inverse Moment Problems , 2012 .

[35]  Russ Tedrake,et al.  Convex optimization of nonlinear feedback controllers via occupation measures , 2013, Int. J. Robotics Res..

[36]  C. Jansson VSDP : A MATLAB software package for Verified Semidefinite Programming , 2006 .

[37]  Frédéric Kratz,et al.  Time optimal control of hybrid systems , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[38]  Mathieu Claeys,et al.  Geometric and Numerical Methods in the Contrast Imaging Problem in Nuclear Magnetic Resonance , 2015 .

[39]  Alexander Barvinok,et al.  A course in convexity , 2002, Graduate studies in mathematics.

[40]  Daniel Liberzon,et al.  Switching in Systems and Control , 2003, Systems & Control: Foundations & Applications.

[41]  Robert Shorten,et al.  Stability Criteria for Switched and Hybrid Systems , 2007, SIAM Rev..

[42]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[43]  Jamal Daafouz,et al.  Suboptimal Switching Control Consistency Analysis for Switched Linear Systems , 2013, IEEE Transactions on Automatic Control.

[44]  Jamal Daafouz,et al.  Dynamic output feedback Hºº control of switched linear systems. , 2011 .

[45]  Didier Henrion,et al.  Convex Computation of the Region of Attraction of Polynomial Control Systems , 2012, IEEE Transactions on Automatic Control.

[46]  Peter E. Caines,et al.  On the Hybrid Optimal Control Problem: Theory and Algorithms , 2007, IEEE Transactions on Automatic Control.

[47]  Denis Arzelier,et al.  Measures and LMIs for Impulsive Nonlinear Optimal Control , 2014, IEEE Transactions on Automatic Control.

[48]  S. Shankar Sastry,et al.  Consistent Approximations for the Optimal Control of Constrained Switched Systems - Part 2: An Implementable Algorithm , 2013, SIAM J. Control. Optim..

[49]  Benedetto Piccoli,et al.  Hybrid systems and optimal control , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[50]  F. Clarke Functional Analysis, Calculus of Variations and Optimal Control , 2013 .

[51]  Hai Lin,et al.  Stability and Stabilizability of Switched Linear Systems: A Survey of Recent Results , 2009, IEEE Transactions on Automatic Control.

[52]  Rodolphe Sepulchre,et al.  Reconstructing trajectories from the moments of occupation measures , 2014, 53rd IEEE Conference on Decision and Control.

[53]  Yohann de Castro,et al.  Exact Reconstruction using Beurling Minimal Extrapolation , 2011, 1103.4951.

[54]  R. V. Gamkrelidze,et al.  Principles of optimal control theory , 1977 .

[55]  Emmanuel J. Candès,et al.  Towards a Mathematical Theory of Super‐resolution , 2012, ArXiv.

[56]  J. Rubio Control and Optimization: The Linear Treatment of Nonlinear Problems , 1986 .

[57]  Emmanuel Trélat,et al.  Nonlinear Optimal Control via Occupation Measures and LMI-Relaxations , 2007, SIAM J. Control. Optim..

[58]  E. Anderson,et al.  Linear programming in infinite-dimensional spaces : theory and applications , 1987 .