Searching for principles of brain computation

Experimental methods in neuroscience, such as calcium-imaging and recordings with multi-electrode arrays, are advancing at a rapid pace. They produce insight into the simultaneous activity of large numbers of neurons, and into plasticity processes in the brains of awake and behaving animals. These new data constrain models for neural computation and network plasticity that underlie perception, cognition, behavior, and learning. I will discuss in this short article four such constraints: inherent recurrent network activity and heterogeneous dynamic properties of neurons and synapses, stereotypical spatio-temporal activity patterns in networks of neurons, high trial-to-trial variability of network responses, and functional stability in spite of permanently ongoing changes in the network. I am proposing that these constraints provide hints to underlying principles of brain computation and learning.

[1]  F. Helmchen,et al.  Behaviour-dependent recruitment of long-range projection neurons in somatosensory cortex , 2013, Nature.

[2]  H. Seo,et al.  A reservoir of time constants for memory traces in cortical neurons , 2011, Nature Neuroscience.

[3]  G. Edelman,et al.  Spike-timing dynamics of neuronal groups. , 2004, Cerebral cortex.

[4]  David J. Field,et al.  How Close Are We to Understanding V1? , 2005, Neural Computation.

[5]  S. Rumpel,et al.  Discrete Neocortical Dynamics Predict Behavioral Categorization of Sounds , 2012, Neuron.

[6]  L. F. Abbott,et al.  Generating Coherent Patterns of Activity from Chaotic Neural Networks , 2009, Neuron.

[7]  K. Svoboda,et al.  Experience-dependent structural synaptic plasticity in the mammalian brain , 2009, Nature Reviews Neuroscience.

[8]  György Buzsáki,et al.  Neural Syntax: Cell Assemblies, Synapsembles, and Readers , 2010, Neuron.

[9]  W. Singer,et al.  Distributed Fading Memory for Stimulus Properties in the Primary Visual Cortex , 2009, PLoS biology.

[10]  M. Sigman,et al.  Confidence as Bayesian Probability: From Neural Origins to Behavior , 2015, Neuron.

[11]  A. Pouget,et al.  Probabilistic brains: knowns and unknowns , 2013, Nature Neuroscience.

[12]  W. Maass,et al.  Self-tuning of neural circuits through short-term synaptic plasticity. , 2007, Journal of neurophysiology.

[13]  Wolfgang Maass,et al.  Noise as a Resource for Computation and Learning in Networks of Spiking Neurons , 2014, Proceedings of the IEEE.

[14]  H. Markram,et al.  Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex. , 2000, Science.

[15]  Wolfgang Maass,et al.  Emergence of complex computational structures from chaotic neural networks through reward-modulated Hebbian learning. , 2014, Cerebral cortex.

[16]  Cristina Savin,et al.  Spatio-temporal Representations of Uncertainty in Spiking Neural Networks , 2014, NIPS.

[17]  Mark S. Goldman,et al.  Memory without Feedback in a Neural Network , 2017, Neuron.

[18]  Henry Markram,et al.  Fading memory and kernel properties of generic cortical microcircuit models , 2004, Journal of Physiology-Paris.

[19]  Wolfgang Maass,et al.  Emergence of Dynamic Memory Traces in Cortical Microcircuit Models through STDP , 2013, The Journal of Neuroscience.

[20]  Herbert Jaeger,et al.  The''echo state''approach to analysing and training recurrent neural networks , 2001 .

[21]  W. Singer Cortical dynamics revisited , 2013, Trends in Cognitive Sciences.

[22]  A. Tversky,et al.  Judgment under Uncertainty: Heuristics and Biases , 1974, Science.

[23]  Alexander J. Sadovsky,et al.  Mouse Visual Neocortex Supports Multiple Stereotyped Patterns of Microcircuit Activity , 2014, The Journal of Neuroscience.

[24]  A. Treves,et al.  Theta-paced flickering between place-cell maps in the hippocampus , 2011, Nature.

[25]  Xiao-Jing Wang,et al.  The importance of mixed selectivity in complex cognitive tasks , 2013, Nature.

[26]  A. Litwin-Kumar,et al.  Formation and maintenance of neuronal assemblies through synaptic plasticity , 2014, Nature Communications.

[27]  G. Gigerenzer,et al.  Probabilistic mental models: a Brunswikian theory of confidence. , 1991, Psychological review.

[28]  Henry Markram,et al.  Real-Time Computing Without Stable States: A New Framework for Neural Computation Based on Perturbations , 2002, Neural Computation.

[29]  D. Knill,et al.  Apparent surface curvature affects lightness perception , 1991, Nature.

[30]  Stefan Habenschuss,et al.  Stochastic Computations in Cortical Microcircuit Models , 2013, PLoS Comput. Biol..

[31]  K. Harris,et al.  Spontaneous Events Outline the Realm of Possible Sensory Responses in Neocortical Populations , 2009, Neuron.

[32]  M. Stokes ‘Activity-silent’ working memory in prefrontal cortex: a dynamic coding framework , 2015, Trends in Cognitive Sciences.

[33]  Lacey J. Kitch,et al.  Long-term dynamics of CA1 hippocampal place codes , 2013, Nature Neuroscience.

[34]  Ehl Emile Aarts,et al.  Simulated annealing and Boltzmann machines , 2003 .

[35]  Michael J. Berry,et al.  High Accuracy Decoding of Dynamical Motion from a Large Retinal Population , 2014, PLoS Comput. Biol..

[36]  Erin L. Rich,et al.  Decoding subjective decisions from orbitofrontal cortex , 2016, Nature Neuroscience.

[37]  T. Branco,et al.  The probability of neurotransmitter release: variability and feedback control at single synapses , 2009, Nature Reviews Neuroscience.

[38]  M. Orger,et al.  Whole-Brain Activity Maps Reveal Stereotyped, Distributed Networks for Visuomotor Behavior , 2014, Neuron.

[39]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[40]  David Kappel,et al.  Network Plasticity as Bayesian Inference , 2015, PLoS Comput. Biol..

[41]  R. Yuste,et al.  Visual stimuli recruit intrinsically generated cortical ensembles , 2014, Proceedings of the National Academy of Sciences.

[42]  Wolfgang Maass,et al.  Neural Dynamics as Sampling: A Model for Stochastic Computation in Recurrent Networks of Spiking Neurons , 2011, PLoS Comput. Biol..

[43]  W. Maass,et al.  A quantitative analysis of information about past and present stimuli encoded by spikes of A1 neurons. , 2012, Journal of neurophysiology.

[44]  C. Gilbert,et al.  Axons and Synaptic Boutons Are Highly Dynamic in Adult Visual Cortex , 2006, Neuron.

[45]  Eduardo D. Sontag,et al.  Computational Aspects of Feedback in Neural Circuits , 2006, PLoS Comput. Biol..

[46]  Wolfgang Maass,et al.  A Statistical Analysis of Information- Processing Properties of Lamina-specific Cortical Microcircuit Models , 2022 .

[47]  N. Logothetis,et al.  Multistable phenomena: changing views in perception , 1999, Trends in Cognitive Sciences.

[48]  Antonius M J VanDongen,et al.  Short-Term Memory in Networks of Dissociated Cortical Neurons , 2013, The Journal of Neuroscience.

[49]  Robert A. Legenstein,et al.  Methods for Estimating the Computational Power and Generalization Capability of Neural Microcircuits , 2004, NIPS.

[50]  Christopher D. Harvey,et al.  Choice-specific sequences in parietal cortex during a virtual-navigation decision task , 2012, Nature.

[51]  Wolfgang Maass,et al.  Probabilistic Inference in General Graphical Models through Sampling in Stochastic Networks of Spiking Neurons , 2011, PLoS Comput. Biol..

[52]  H. Sompolinsky,et al.  Chaos in Neuronal Networks with Balanced Excitatory and Inhibitory Activity , 1996, Science.

[53]  E. Marder,et al.  Variability, compensation and homeostasis in neuron and network function , 2006, Nature Reviews Neuroscience.

[54]  Henry Markram,et al.  Theory of the Computational Function of Microcircuit Dynamics , 2004 .

[55]  Robert A. Legenstein,et al.  Ensembles of Spiking Neurons with Noise Support Optimal Probabilistic Inference in a Dynamically Changing Environment , 2014, PLoS Comput. Biol..

[56]  Rafael Yuste On testing neural network models , 2015, Nature Reviews Neuroscience.

[57]  Wulfram Gerstner,et al.  Neuronal Dynamics: From Single Neurons To Networks And Models Of Cognition , 2014 .

[58]  B. McNaughton,et al.  Packet-based communication in the cortex , 2015, Nature Reviews Neuroscience.

[59]  Stefano Fusi,et al.  Why neurons mix: high dimensionality for higher cognition , 2016, Current Opinion in Neurobiology.

[60]  Hilbert J. Kappen,et al.  Learning Universal Computations with Spikes , 2015, PLoS Comput. Biol..

[61]  David J. C. MacKay,et al.  Bayesian Interpolation , 1992, Neural Computation.

[62]  L. Abbott,et al.  Neural network dynamics. , 2005, Annual review of neuroscience.

[63]  W. Newsome,et al.  Context-dependent computation by recurrent dynamics in prefrontal cortex , 2013, Nature.

[64]  E. Kavalali The mechanisms and functions of spontaneous neurotransmitter release , 2014, Nature Reviews Neuroscience.

[65]  Geoffrey E. Hinton Tensor Product Variable Binding and the Representation of Symbolic Structures in Connectionist Systems , 1991 .

[66]  Henry Markram,et al.  On the computational power of circuits of spiking neurons , 2004, J. Comput. Syst. Sci..

[67]  E. Marder,et al.  Computational implications of biophysical diversity and multiple timescales in neurons and synapses for circuit performance , 2016, Current Opinion in Neurobiology.

[68]  P. J. Sjöström,et al.  Synapse-type-specific plasticity in local circuits , 2015, Current Opinion in Neurobiology.

[69]  Charles Kemp,et al.  How to Grow a Mind: Statistics, Structure, and Abstraction , 2011, Science.

[70]  W. Maass,et al.  State-dependent computations: spatiotemporal processing in cortical networks , 2009, Nature Reviews Neuroscience.

[71]  Tomaso Poggio,et al.  From Understanding Computation to Understanding Neural Circuitry , 1976 .

[72]  Harald Haas,et al.  Harnessing Nonlinearity: Predicting Chaotic Systems and Saving Energy in Wireless Communication , 2004, Science.

[73]  G. Shepherd,et al.  The neocortical circuit: themes and variations , 2015, Nature Neuroscience.

[74]  József Fiser,et al.  Spontaneous Cortical Activity Reveals Hallmarks of an Optimal Internal Model of the Environment , 2011, Science.

[75]  Theodore H. Lindsay,et al.  Global Brain Dynamics Embed the Motor Command Sequence of Caenorhabditis elegans , 2015, Cell.

[76]  Wolfgang Maass,et al.  Learning Probabilistic Inference through Spike-Timing-Dependent Plasticity123 , 2016, eNeuro.

[77]  G. Buzsáki,et al.  Behavior-dependent short-term assembly dynamics in the medial prefrontal cortex , 2008, Nature Neuroscience.

[78]  Nicholas C Spitzer,et al.  Neurotransmitter Switching? No Surprise , 2015, Neuron.

[79]  Robert A. Legenstein,et al.  2007 Special Issue: Edge of chaos and prediction of computational performance for neural circuit models , 2007 .

[80]  Yonatan Loewenstein,et al.  Predicting the Dynamics of Network Connectivity in the Neocortex , 2015, The Journal of Neuroscience.