Machine learning quantum phases of matter beyond the fermion sign problem

State-of-the-art machine learning techniques promise to become a powerful tool in statistical mechanics via their capacity to distinguish different phases of matter in an automated way. Here we demonstrate that convolutional neural networks (CNN) can be optimized for quantum many-fermion systems such that they correctly identify and locate quantum phase transitions in such systems. Using auxiliary-field quantum Monte Carlo (QMC) simulations to sample the many-fermion system, we show that the Green’s function holds sufficient information to allow for the distinction of different fermionic phases via a CNN. We demonstrate that this QMC + machine learning approach works even for systems exhibiting a severe fermion sign problem where conventional approaches to extract information from the Green’s function, e.g. in the form of equal-time correlation functions, fail.

[1]  L. Balents Spin liquids in frustrated magnets , 2010, Nature.

[2]  Ievgeniia Oshurko Quantum Machine Learning , 2020, Quantum Computing.

[3]  Matthias Troyer,et al.  Computational complexity and fundamental limitations to fermionic quantum Monte Carlo simulations , 2004, Physical review letters.

[4]  Matthias Troyer,et al.  Fermionic quantum critical point of spinless fermions on a honeycomb lattice , 2014, 1407.0029.

[5]  C. Bény Deep learning and the renormalization group , 2013, 1301.3124.

[6]  David J. Schwab,et al.  Supervised Learning with Quantum-Inspired Tensor Networks , 2016, ArXiv.

[7]  David P. DiVincenzo,et al.  The complexity of stoquastic local Hamiltonian problems , 2006, Quantum Inf. Comput..

[8]  H. Yao,et al.  Solving the fermion sign problem in quantum Monte Carlo simulations by Majorana representation , 2014, 1408.2269.

[9]  Matthias Troyer,et al.  Solving the quantum many-body problem with artificial neural networks , 2016, Science.

[10]  S. Huber,et al.  Learning phase transitions by confusion , 2016, Nature Physics.

[11]  J. E. Hirsch,et al.  Discrete Hubbard-Stratonovich transformation for fermion lattice models , 1983 .

[12]  Thomas Ertl,et al.  Computer Graphics - Principles and Practice, 3rd Edition , 2014 .

[13]  Lei Wang,et al.  Accelerate Monte Carlo Simulations with Restricted Boltzmann Machines , 2018 .

[14]  K. Binder,et al.  A Guide to Monte Carlo Simulations in Statistical Physics: Preface , 2005 .

[15]  Martín Abadi,et al.  TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems , 2016, ArXiv.

[16]  Roger G. Melko,et al.  Learning Thermodynamics with Boltzmann Machines , 2016, ArXiv.

[17]  Z. Meng,et al.  Quantum spin liquid emerging in two-dimensional correlated Dirac fermions , 2010, Nature.

[18]  Jürgen Schmidhuber,et al.  Deep learning in neural networks: An overview , 2014, Neural Networks.

[19]  Tanaka Akinori,et al.  Detection of Phase Transition via Convolutional Neural Networks , 2016, 1609.09087.

[20]  Roger G. Melko,et al.  Machine learning phases of matter , 2016, Nature Physics.

[21]  David J. Gross,et al.  Dynamical symmetry breaking in asymptotically free field theories , 1974 .

[22]  Li Huang,et al.  Accelerated Monte Carlo simulations with restricted Boltzmann machines , 2016, 1610.02746.

[23]  Dong-Ling Deng,et al.  Exact Machine Learning Topological States , 2016 .

[24]  Yi Zhang,et al.  Quantum Loop Topography for Machine Learning. , 2016, Physical review letters.

[25]  Steven K. Feiner,et al.  Computer graphics: principles and practice (2nd ed.) , 1990 .

[26]  P. Anderson,et al.  Towards a complete theory of high Tc , 2006 .

[27]  S. Capponi Phase diagram of interacting spinless fermions on the honeycomb lattice , 2015, Journal of physics. Condensed matter : an Institute of Physics journal.

[28]  Lei Wang,et al.  Recommender engine for continuous-time quantum Monte Carlo methods. , 2016, Physical review. E.

[29]  A. Schofield Non-Fermi liquids , 1999 .

[30]  Roger G. Melko,et al.  Bridging Lattice-Scale Physics and Continuum Field Theory with Quantum Monte Carlo Simulations , 2012, 1204.5405.

[31]  Andrea J. Liu,et al.  A structural approach to relaxation in glassy liquids , 2015, Nature Physics.

[32]  Lei Wang,et al.  Discovering phase transitions with unsupervised learning , 2016, 1606.00318.

[33]  S. Sorella,et al.  Universal quantum criticality in the metal-insulator transition of two-dimensional interacting Dirac electrons , 2015, 1510.08593.

[34]  Simon Trebst,et al.  Numerical stabilization of entanglement computation in auxiliary-field quantum Monte Carlo simulations of interacting many-fermion systems. , 2016, Physical review. E.

[35]  S. Chandrasekharan,et al.  Meron-Cluster Solution of Fermion Sign Problems , 1999, cond-mat/9902128.

[36]  Isaac Tamblyn,et al.  Sampling algorithms for validation of supervised learning models for Ising-like systems , 2017, J. Comput. Phys..

[37]  Yang Qi,et al.  Self-learning Monte Carlo method , 2016, 1610.03137.

[38]  P. Mahadevan,et al.  An overview , 2007, Journal of Biosciences.

[39]  Richard Blankenbecler,et al.  Monte Carlo Simulations of One-dimensional Fermion Systems , 1982 .

[40]  David J. Schwab,et al.  An exact mapping between the Variational Renormalization Group and Deep Learning , 2014, ArXiv.

[41]  Roger Melko,et al.  Quantum Boltzmann Machine , 2016, 1601.02036.

[42]  Michele Parrinello,et al.  Generalized neural-network representation of high-dimensional potential-energy surfaces. , 2007, Physical review letters.

[43]  M. Vojta,et al.  Fermi-liquid instabilities at magnetic quantum phase transitions , 2006, cond-mat/0606317.

[44]  Yi Zhang,et al.  Triangular Quantum Loop Topography for Machine Learning , 2016 .

[45]  H. Yao,et al.  Fermion-sign-free Majarana-quantum-Monte-Carlo studies of quantum critical phenomena of Dirac fermions in two dimensions , 2014, 1411.7383.

[46]  Anyi Li Fermion bag solutions to some sign problems in four-fermion field theories , 2012, 1211.0619.

[47]  T. Ohtsuki,et al.  Deep Learning the Quantum Phase Transitions in Random Electron Systems: Applications to Three Dimensions , 2016, 1612.04909.

[48]  Norm M. Tubman,et al.  Measuring quantum entanglement, machine learning and wave function tomography: Bridging theory and experiment with the quantum gas microscope , 2016, 1609.08142.

[49]  F. D. Juan,et al.  Interaction-driven phases in the half-filled honeycomb lattice: An infinite density matrix renormalization group study , 2015, 1505.01674.

[50]  S. Trebst,et al.  Entanglement and the fermion sign problem in auxiliary field quantum Monte Carlo simulations , 2015, 1511.02878.

[51]  A. Tanaka,et al.  Detection of phase transition via convolutional neural network , 2016, 1609.09087.

[52]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[53]  Alex Krizhevsky,et al.  Learning Multiple Layers of Features from Tiny Images , 2009 .

[54]  White,et al.  Sign problem in the numerical simulation of many-electron systems. , 1990, Physical review. B, Condensed matter.