Concepts, Theory, and Techniques PRINCIPLES OF MULTIOBJECTIVE OPTIMIZATION*

This paper attempts to isolate and analyze the principal ideas of multiobjective optimization. We do this without casting aspersions on single-objective optimization or championing any one multiobjective technique. We examine each fundamental idea for strengths and weaknesses and subject two—efficiency and utility—to extended consideration. Some general recommendations are made in light of this analysis. Besides the simple advice to retain single-objective optimization as a possible approach, we suggest that three broad classes of multiobjective techniques are very promising in terms of reliably, and believably, achieving a most preferred solution. These are: (1) partial generation of the efficient set, a rubric we use to unify a wide spectrum of both interactive and analytic methods; (2) explicit utility maximization, a much-overlooked approach combining multiattribute decision theory and mathematical programming; and (3) interactive implicit utility maximization, the popular class of methods introduced by Geoffrion, Dyer, and Feinberg [24] and extended significantly by others.

[1]  H. Simon,et al.  On the concept of organizational goal. , 1964 .

[2]  A. M. Geoffrion Proper efficiency and the theory of vector maximization , 1968 .

[3]  Arthur M. Geoffrion,et al.  An Interactive Approach for Multi-Criterion Optimization, with an Application to the Operation of an Academic Department , 1972 .

[4]  Heinz Isermann,et al.  Technical Note - Proper Efficiency and the Linear Vector Maximum Problem , 1974, Oper. Res..

[5]  P. Yu Cone convexity, cone extreme points, and nondominated solutions in decision problems with multiobjectives , 1974 .

[6]  Jyrki Wallenius,et al.  Comparative Evaluation of Some Interactive Approaches to Multicriterion Optimization , 1975 .

[7]  Joseph G. Ecker,et al.  Finding efficient points for linear multiple objective programs , 1975, Math. Program..

[8]  D. H. Marks,et al.  A review and evaluation of multiobjective programing techniques , 1975 .

[9]  P. Yu,et al.  The set of all nondominated solutions in linear cases and a multicriteria simplex method , 1975 .

[10]  J. G. Gros,et al.  Power plant siting: A paretian environmental approach , 1975 .

[11]  S. Zionts,et al.  An Interactive Programming Method for Solving the Multiple Criteria Problem , 1976 .

[12]  Ralph E. Steuer Multiple Objective Linear Programming with Interval Criterion Weights , 1976 .

[13]  T. Gal A general method for determining the set of all efficient solutions to a linear vectormaximum problem , 1977 .

[14]  Ralph L. Keeney,et al.  The art of assessing multiattribute utility functions , 1977 .

[15]  Kenneth R. Oppenheimer,et al.  A Proxy Approach To Multi-Attribute Decision Making , 1977 .

[16]  H. P. Benson,et al.  The Vector Maximization Problem: Proper Efficiency and Stability , 1977 .

[17]  H. P. Benson,et al.  Existence of efficient solutions for vector maximization problems , 1978 .

[18]  Donald Wehrung,et al.  Interactive Identification and Optimization Using a Binary Preference Relation , 1978, Oper. Res..

[19]  James P. Ignizio,et al.  A Review of Goal Programming: A Tool for Multiobjective Analysis , 1978 .

[20]  Joseph G. Ecker,et al.  Finding all efficient extreme points for multiple objective linear programs , 1978, Math. Program..

[21]  Ralph E. Steuer,et al.  An Interactive Multiple-Objective Linear Programming Approach to a Problem in Forest Management , 1978, Oper. Res..

[22]  Ralph L. Keeney Evaluation of Proposed Storage Sites , 1979, Oper. Res..

[23]  Rakesh K. Sarin,et al.  Measurable Multiattribute Value Functions , 1979, Oper. Res..

[24]  Harold P. Benson,et al.  Vector maximization with two objective functions , 1979 .

[25]  R. Soland MULTICRITERIA OPTIMIZATION: A GENERAL CHARACTERIZATION OF EFFICIENT SOLUTIONS* , 1979 .

[26]  Joseph J. Talavage,et al.  A Tradeoff Cut Approach to Multiple Objective Optimization , 1980, Oper. Res..

[27]  J. Ecker,et al.  Generating all maximal efficient faces for multiple objective linear programs , 1980 .

[28]  D. J. White Multi-Objective Interactive Programming , 1980 .

[29]  Ralph L. Keeney,et al.  METHODOLOGIES FOR SITING ENERGY FACILITIES , 1980 .

[30]  Rakesh K. Sarin,et al.  Preference Conditions for Multiattribute Value Functions , 1980, Oper. Res..

[31]  B. Hobbs A COMPARISON OF WEIGHTING METHODS IN POWER PLANT SITING , 1980 .

[32]  Richard M. Soland,et al.  An interactive computer system for multicriteria facility location , 1981, Comput. Oper. Res..

[33]  J. G. Ecker,et al.  Selecting Subsets from the Set of Nondominated Vectors in Multiple Objective Linear Programming , 1981 .

[34]  P. Vincke,et al.  Multicriteria analysis: survey and new directions , 1981 .

[35]  Kamal Golabi,et al.  Selecting a Portfolio of Solar Energy Projects Using Multiattribute Preference Theory , 1981 .

[36]  Richard M. Shane,et al.  TVA Hydro Scheduling Model: Practical Aspects , 1982 .

[37]  C. C. Waid,et al.  An Experimental Comparison of Different Approaches to Determining Weights in Additive Utility Models , 1982 .

[38]  Robert L. Winkler State of the Art: RESEARCH DIRECTIONS IN DECISION MAKING UNDER UNCERTAINTY* , 1982 .

[39]  S. Zionts,et al.  An Interactive Multiple Objective Linear Programming Method for a Class of Underlying Nonlinear Utility Functions , 1983 .

[40]  Ralph E. Steuer,et al.  An interactive weighted Tchebycheff procedure for multiple objective programming , 1983, Math. Program..

[41]  Jeffrey L. Ringuest,et al.  A PREEMPTIVE VALUE‐FUNCTION METHOD APPROACH FOR MULTIOBJECTIVE LINEAR PROGRAMMING PROBLEMS , 1983 .

[42]  Thomas L. Morin,et al.  Optimality conditions in nonconical multiple-objective programming , 1983 .

[43]  Edward L. Hannan,et al.  A MULTIATTRIBUTE DECISION‐MAKING APPROACH TO THE SELECTION OF AN AUXILIARY DEVICE FOR ICEBREAKERS* , 1983 .

[44]  Simon French,et al.  Interactive Multi-Objective Programming: Its Aims, Applications and Demands , 1984 .

[45]  P. Farquhar State of the Art—Utility Assessment Methods , 1984 .

[46]  Gordon B. Hazen,et al.  Partial Information, Dominance, and Potential Optimality in Multiattribute Utility Theory , 1986, Oper. Res..