Stable Cosparse Recovery via \ell_q-analysis Optimization

In this paper we study the $\ell_p$-analysis optimization ($0<p\leq1$) problem for cosparse signal recovery. We establish a bound for recovery error via the restricted $p$-isometry property over any subspace. We further prove that the nonconvex $\ell_q$-analysis optimization can do recovery with a lower sample complexity and in a wider range of cosparsity than its convex counterpart. In addition, we develop an iteratively reweighted method to solve the optimization problem under a variational framework. Empirical results of preliminary computational experiments illustrate that the nonconvex method outperforms its convex counterpart.

[1]  Stephen P. Boyd,et al.  1 Trend Filtering , 2009, SIAM Rev..

[2]  Jieping Ye,et al.  Guaranteed Sparse Recovery under Linear Transformation , 2013, ICML.

[3]  R. Tibshirani,et al.  Sparsity and smoothness via the fused lasso , 2005 .

[4]  P. Lions,et al.  Image recovery via total variation minimization and related problems , 1997 .

[5]  Bhaskar D. Rao,et al.  Sparse signal reconstruction from limited data using FOCUSS: a re-weighted minimum norm algorithm , 1997, IEEE Trans. Signal Process..

[6]  M. Davies,et al.  Greedy-like algorithms for the cosparse analysis model , 2012, 1207.2456.

[7]  Mário A. T. Figueiredo,et al.  Signal restoration with overcomplete wavelet transforms: comparison of analysis and synthesis priors , 2009, Optical Engineering + Applications.

[8]  S. Foucart,et al.  Sparsest solutions of underdetermined linear systems via ℓq-minimization for 0 , 2009 .

[9]  Thomas Brox,et al.  On Iteratively Reweighted Algorithms for Nonsmooth Nonconvex Optimization in Computer Vision , 2015, SIAM J. Imaging Sci..

[10]  Holger Rauhut,et al.  The Gelfand widths of lp-balls for 0p<=1 , 2010, J. Complex..

[11]  Emmanuel J. Candès,et al.  Decoding by linear programming , 2005, IEEE Transactions on Information Theory.

[12]  Holger Rauhut,et al.  The Gelfand widths of ℓp-balls for 0 , 2010, ArXiv.

[13]  Yonina C. Eldar,et al.  Compressed Sensing with Coherent and Redundant Dictionaries , 2010, ArXiv.

[14]  Song Li,et al.  Compressed Sensing with coherent tight frames via $l_q$-minimization for $0 , 2011, ArXiv.

[15]  I. Daubechies,et al.  Iteratively reweighted least squares minimization for sparse recovery , 2008, 0807.0575.

[16]  OsherStanley,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[17]  Jian-Feng Cai,et al.  Split Bregman Methods and Frame Based Image Restoration , 2009, Multiscale Model. Simul..

[18]  Michael Elad,et al.  Analysis versus synthesis in signal priors , 2006, 2006 14th European Signal Processing Conference.

[19]  Yulong Liu,et al.  Compressed Sensing With General Frames via Optimal-Dual-Based $\ell _{1}$-Analysis , 2012, IEEE Transactions on Information Theory.

[20]  Martin Kleinsteuber,et al.  A Joint Intensity and Depth Co-sparse Analysis Model for Depth Map Super-resolution , 2013, 2013 IEEE International Conference on Computer Vision.

[21]  Arvid Lundervold,et al.  Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time , 2003, IEEE Trans. Image Process..

[22]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[23]  R. Chartrand,et al.  Restricted isometry properties and nonconvex compressive sensing , 2007 .

[24]  Jianqing Fan,et al.  Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties , 2001 .

[25]  Stephen P. Boyd,et al.  Enhancing Sparsity by Reweighted ℓ1 Minimization , 2007, 0711.1612.

[26]  Franck Picard,et al.  On the robustness of the generalized fused lasso to prior specifications , 2014, Statistics and Computing.

[27]  Gert R. G. Lanckriet,et al.  On the Convergence of the Concave-Convex Procedure , 2009, NIPS.

[28]  R. Tibshirani,et al.  The solution path of the generalized lasso , 2010, 1005.1971.

[29]  Michael Elad,et al.  Optimally sparse representation in general (nonorthogonal) dictionaries via ℓ1 minimization , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[30]  Emmanuel J. Candès,et al.  NESTA: A Fast and Accurate First-Order Method for Sparse Recovery , 2009, SIAM J. Imaging Sci..

[31]  Wotao Yin,et al.  Iteratively reweighted algorithms for compressive sensing , 2008, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.

[32]  Mohamed-Jalal Fadili,et al.  Robust Sparse Analysis Regularization , 2011, IEEE Transactions on Information Theory.

[33]  Akram Aldroubi,et al.  Perturbations of measurement matrices and dictionaries in compressed sensing , 2012 .

[34]  D. L. Donoho,et al.  Compressed sensing , 2006, IEEE Trans. Inf. Theory.

[35]  Rob Fergus,et al.  Fast Image Deconvolution using Hyper-Laplacian Priors , 2009, NIPS.

[36]  Rayan Saab,et al.  Sparse Recovery by Non-convex Optimization -- Instance Optimality , 2008, ArXiv.

[37]  Mike E. Davies,et al.  Sampling Theorems for Signals From the Union of Finite-Dimensional Linear Subspaces , 2009, IEEE Transactions on Information Theory.

[38]  Michael Elad,et al.  The Cosparse Analysis Model and Algorithms , 2011, ArXiv.

[39]  Deanna Needell,et al.  Stable Image Reconstruction Using Total Variation Minimization , 2012, SIAM J. Imaging Sci..