Spark plasma sintered bismuth telluride-based thermoelectric materials incorporating dispersed boron carbide

This work was performed under contract to the European Space Agency under the Thermoelectric Converter for Small-Scale RTG programme, 23026/10/NL/AT.

[1]  C. Chen,et al.  Effects of SiC Nanodispersion on the Thermoelectric Properties of p-Type and n-Type Bi2Te3-Based Alloys , 2011 .

[2]  Leopold Summerer,et al.  Nuclear Power Sources: A Key Enabling Technology for Planetary Exploration , 2011 .

[3]  Min Zhou,et al.  Thermoelectric and mechanical properties of nano-SiC-dispersed Bi2Te3 fabricated by mechanical alloying and spark plasma sintering , 2008 .

[4]  J. Kruzic,et al.  Fracture Toughness of Co4Sb12 and In0.1Co4Sb12 Thermoelectric Skutterudites Evaluated by Three Methods , 2013 .

[5]  T. Tritt,et al.  Effect of Processing Route on the Microstructure and Thermoelectric Properties of Bismuth Telluride-Based Alloys , 2010 .

[6]  Kyeongsoon Park,et al.  Thermoelectric properties of p-type Te doped Bi0.5Sb1.5Te3 fabricated by powder extrusion , 2002 .

[7]  Cham Kim,et al.  Influence of powder morphology on thermoelectric anisotropy of spark-plasma-sintered Bi–Te-based thermoelectric materials , 2011 .

[8]  H. Wang,et al.  Strength of Bismuth Telluride , 2010 .

[9]  P. Sharma,et al.  Development of a Bi_2Te_3-based thermoelectric generator with high-aspect ratio, free-standing legs , 2012 .

[10]  Han Li,et al.  High-Temperature Mechanical and Thermoelectric Properties of p-Type Bi0.5Sb1.5Te3 Commercial Zone Melting Ingots , 2014, Journal of Electronic Materials.

[11]  Do Hyang Kim,et al.  Microstructure and thermoelectric properties of p-type Bi2Te3–Sb2Te3 alloys produced by rapid solidification and spark plasma sintering , 2010 .

[12]  Nigel P. Bannister,et al.  Metal matrix composite fuel for space radioisotope energy sources , 2013 .

[13]  J. Quinn,et al.  Indentation brittleness of ceramics: a fresh approach , 1997 .

[14]  Hyo-Seob Kim,et al.  Thermoelectric properties of n-type 95%Bi2Te3–5%Bi2Se3 compounds fabricated by gas-atomization and spark plasma sintering , 2014 .

[15]  Kyung Tae Kim,et al.  Fabrication and enhanced thermoelectric properties of alumina nanoparticle-dispersed Bi 0.5 Sb 1.5 Te 3 matrix composites , 2013 .

[16]  Taek-Soo Kim,et al.  The microstructure and thermoelectric properties of rapid solidified p-type Sb2Te3–25 wt.%Bi2Te3 alloys , 2012 .

[17]  B. Chun,et al.  Microstructure and thermoelectric properties of extruded n-type 95%Bi2Te2–5%Bi2Se3 alloy along bar length , 2003 .

[18]  Jingfeng Li,et al.  Effect of nano‐SiC dispersion on thermoelectric properties of Bi2Te3 polycrystals , 2006 .

[19]  W. P. Carroll,et al.  Review of recent advances of radioisotope power systems , 2008 .

[20]  J. Kübler Fracture toughness of ceramics using the SEVNB method; round robin , 2013 .

[21]  D. Hyun,et al.  Thermoelectric properties of 25%Bi2Te3-75%Sb2Te3 solid solution prepared by hot-pressing method , 1997 .

[22]  Glen H. Fountain,et al.  The New Horizons Spacecraft , 2007, 0709.4288.

[23]  Theo Fett,et al.  Stress intensity factors and weight functions , 1997 .

[24]  F. Ren,et al.  Thermoelectric and mechanical properties of multi-walled carbon nanotube doped Bi0.4Sb1.6Te3 thermoelectric material , 2013 .

[25]  Nigel P. Bannister,et al.  A conceptual spacecraft radioisotope thermoelectric and heating unit (RTHU) , 2012 .

[26]  Junyou Yang,et al.  Microstructure and thermoelectric properties of n-type Bi2Te2.85Se0.15 prepared by mechanical alloying and plasma activated sintering , 2006 .

[27]  J. Yang,et al.  Characterization and thermoelectric properties of p-type 25%Bi2Te3–75%Sb2Te3 prepared via mechanical alloying and plasma activated sintering , 2006 .

[28]  C. H. Lim,et al.  Thermoelectric properties of p-type Bi0.5Sb1.5Te3 compounds fabricated by spark plasma sintering , 2006 .