An Approach for Segmentation of Airborne Laser Point Clouds Utilizing Scan-Line Characteristics

In this study, we suggest a new segmentation algorithm for processing airborne laser point cloud data which is more memory efficient and faster than previous approaches. The main principle is the reading of data points along a scan line and their direct classification into homogeneous groups as a single process. The results of our experiments demonstrate that the algorithm runs faster and is more memory efficient than previous approaches. Moreover, the segmentation accuracy is generally acceptable.