The Effect of Yarkovsky Thermal Forces on the Dynamical Evolution of Asteroids and Meteoroids

The Yarkovsky effect is a thermal radiation force that causes objects to undergo semimajor axis drift and spinup/spindown as a function of their spin, orbit, and material properties. This mechanism can be used to (1) deliver asteroids (and meteoroids) with diameter D < 20 km from their parent bodies in the main belt to chaotic resonance zones capable of transporting this material to Earth-crossing orbits, (2) disperse asteroid families, with drifting bodies jumping or becoming trapped in mean-motion and secular resonances within the main belt, and (3) modify the rotation rates of asteroids a few kilometers in diameter or smaller enough to possibly explain the excessive number of very fast and very slow rotators among the small asteroids. Accordingly, we suggest that nongravitational forces, which produce small but meaningful effects on asteroid orbits and rotation rates over long timescales, should now be considered as important as collisions and gravitational perturbations to our overall understanding of asteroid evolution.

[1]  David Vokrouhlický,et al.  YORP-induced long-term evolution of the spin state of small asteroids and meteoroids , 2002 .

[2]  Aldo dell'Oro,et al.  A Search for the Collisional Parent Bodies of Large NEAs , 2002 .

[3]  Alessandro Morbidelli,et al.  The Flora Family: A Case of the Dynamically Dispersed Collisional Swarm? , 2002 .

[4]  R. Jedicke,et al.  Debiased Orbital and Absolute Magnitude Distribution of the Near-Earth Objects , 2002 .

[5]  Vincenzo Zappala,et al.  Asteroid Family Identification , 2002 .

[6]  R. Gil-Hutton,et al.  Collisional evolution of small body populations , 2002 .

[7]  Richard J. Greenberg,et al.  Numerical Evaluation of the General Yarkovsky Effect: Effects on Eccentricity and Longitude of Periapse , 2002 .

[8]  D. Vokrouhlický,et al.  Dynamical Spreading of Asteroid Families by the Yarkovsky Effect , 2001, Science.

[9]  Richard P. Binzel,et al.  Spectral Properties of Near-Earth Objects: Palomar and IRTF Results for 48 Objects Including Spacecraft Targets (9969) Braille and (10302) 1989 ML , 2001 .

[10]  D. Vokrouhlický,et al.  The Yarkovsky thermal force on small asteroids and their fragments - Choosing the right albedo , 2001 .

[11]  D. Rubincam,et al.  Radiative Spin-up and Spin-down of Small Asteroids , 2000 .

[12]  Andrea Milani,et al.  Yarkovsky Effect on Small Near-Earth Asteroids: Mathematical Formulation and Examples , 2000 .

[13]  Petr Pravec,et al.  Fast and Slow Rotation of Asteroids , 2000 .

[14]  P. Farinella,et al.  Efficient delivery of meteorites to the Earth from a wide range of asteroid parent bodies , 2000, Nature.

[15]  A. Milani,et al.  Direct solar radiation pressure on the orbits of small near-Earth asteroids: observable effects? , 2000 .

[16]  J. Burns,et al.  Asteroid Mobility due to Encounters with Ceres, Vesta, Pallas: Monte Carlo codes versus Direct Numerical Integrations , 2000 .

[17]  Joseph A. Burns,et al.  Dynamical Evolution of Main Belt Meteoroids: Numerical Simulations Incorporating Planetary Perturbations and Yarkovsky Thermal Forces , 2000 .

[18]  Alessandro Morbidelli,et al.  The Population of Mars-Crossers: Classification and Dynamical Evolution , 2000 .

[19]  Alain Doressoundiram,et al.  Fugitives from the Eos Family: First Spectroscopic Confirmation☆ , 2000 .

[20]  P. Farinella,et al.  The Yarkovsky Seasonal Effect on Asteroidal Fragments: A Nonlinearized Theory for Spherical Bodies , 1999 .

[21]  Harold F. Levison,et al.  Dynamical Lifetimes and Final Fates of Small Bodies: Orbit Integrations vs Öpik Calculations , 1999 .

[22]  P. Farinella,et al.  Origin, Aging, and Death of Asteroid Families , 1999 .

[23]  E. Pisani,et al.  Puzzling Asteroid Families , 1999 .

[24]  Jedicke,et al.  Understanding the distribution of near-earth asteroids , 1999, Science.

[25]  Paolo Tanga,et al.  On the Size Distribution of Asteroid Families: The Role of Geometry , 1999 .

[26]  Paolo Tanga,et al.  The Velocity–Size Relationship for Members of Asteroid Families and Implications for the Physics of Catastrophic Collisions , 1999 .

[27]  Paolo Farinella,et al.  Yarkovsky-Driven Leakage of Koronis Family Members. I. The Case of 2953 Vysheslavia , 1999 .

[28]  W. Benz,et al.  Catastrophic Disruptions Revisited , 1999, astro-ph/9907117.

[29]  William K. Hartmann,et al.  Reviewing the Yarkovsky effect: New light on the delivery of stone and iron meteorites from the asteroid belt , 1999 .

[30]  A. Morbidelli,et al.  Numerous Weak Resonances Drive Asteroids toward Terrestrial Planets Orbits , 1999 .

[31]  D. Vokrouhlický A COMPLETE LINEAR MODEL FOR THE YARKOVSKY THERMAL FORCE ON SPHERICAL ASTEROID FRAGMENTS , 1999 .

[32]  Vokrouhlick,et al.  Semimajor axis mobility of asteroidal fragments , 1999, Science.

[33]  E. Skoglöv Spin vector evolution for inner solar system asteroids , 1998 .

[34]  D. Vokrouhlický,et al.  The Yarkovsky Seasonal Effect on Asteroidal Fragments: A Nonlinearized Theory for the Plane-parallel Case , 1998 .

[35]  Morbidelli,et al.  Origin of multikilometer earth- and mars-crossing asteroids: A quantitative simulation , 1998, Science.

[36]  Alessandro Morbidelli,et al.  Orbital and temporal distributions of meteorites originating in the asteroid belt , 1998 .

[37]  D. Vokrouhlický Diurnal Yarkovsky effect as a source of mobility of meter-sized asteroidal fragments. I. Linear theory , 1998 .

[38]  W. Hartmann,et al.  Meteorite Delivery via Yarkovsky Orbital Drift , 1998 .

[39]  D. Rubincam Yarkovsky thermal drag on small asteroids and Mars‐Earth delivery , 1998 .

[40]  P. Farinella,et al.  THE DANGEROUS BORDER OF THE 5:2 MEAN MOTION RESONANCE , 1997 .

[41]  L. Schultz,et al.  Cosmic‐ray exposure ages of diogenites and the recent collisional history of the howardite, eucrite and diogenite parent body/bodies , 1997 .

[42]  M. Bailey,et al.  Vesta fragments from v6 and 3:1 resonances: Implications for V‐type near‐Earth asteroids and howardite, eucrite and diogenite meteorites , 1997 .

[43]  Harold F. Levison,et al.  Dynamical Lifetimes of Objects Injected into Asteroid Belt Resonances , 1997 .

[44]  Alberto Cellino,et al.  Reconstructing the Original Ejection Velocity Fields of Asteroid Families , 1996 .

[45]  C. Lagerkvist,et al.  Spin rates of asteroids , 1996 .

[46]  R. Gomes,et al.  Asteroid fragments in Earth-crossing orbits , 1995 .

[47]  Andrea Milani,et al.  An Asteroid on the Brink , 1995 .

[48]  D. Rubincam,et al.  Asteroid orbit evolution due to thermal drag , 1995 .

[49]  Giovanni B. Valsecchi,et al.  Asteroids falling into the Sun , 1994, Nature.

[50]  M. Nolan,et al.  Velocity Distributions among Colliding Asteroids , 1994 .

[51]  Harold F. Levison,et al.  The Long-Term Dynamical Behavior of Short-Period Comets , 1993 .

[52]  P. Farinella,et al.  The Injection of Asteroid Fragments into Resonances , 1993 .

[53]  J. Wisdom,et al.  Symplectic maps for the N-body problem. , 1991 .

[54]  D. Rubincam,et al.  Drag on the LAGEOS satellite , 1990 .

[55]  D. Rubincam Yarkovsky Thermal Drag on LAGEOS , 1988 .

[56]  D. Olsson-Steel The dispersal of the Geminid meteoroid stream by radiative effects , 1987 .

[57]  D. Rubincam,et al.  LAGEOS orbit decay due to infrared radiation from Earth , 1987 .

[58]  D. Olsson-Steel The origin of the sporadic meteoroid component , 1986 .

[59]  G. Wetherill Asteroidal source of ordinary chondrites (Meteoritical Society Presidential Address 1984) , 1985 .

[60]  G. Wetherill ASTEROIDAL SOURCE OF ORDINARY CHONDRITES , 1985 .

[61]  J. Wisdom,et al.  Chaotic behavior and the origin of the 3/1 Kirkwood gap , 1983 .

[62]  J. Burns,et al.  Radiation forces on small particles in the solar system , 1979 .

[63]  V. Slabinski Solar radiation torque on meteoroids: complications for the Yarkovsky effect from spin axis precession. , 1977 .

[64]  C. Peterson A source mechanism for meteorites controlled by the Yarkovsky effect , 1976 .

[65]  S. Paddack,et al.  Rotational bursting of interplanetary dust particles , 1975 .

[66]  G. Wetherill Solar System Sources of Meteorites and Large Meteoroids , 1974 .

[67]  S. Paddack,et al.  Rotational bursting of small celestial bodies: Effects of radiation pressure , 1969 .

[68]  Fred L. Whipple,et al.  A comet model. I. The acceleration of Comet Encke , 1950 .

[69]  S. Dermott,et al.  Asteroidal Dust , 2002 .

[70]  Richard J. Greenberg,et al.  Numerical Evaluation of the General Yarkovsky Effect: Effects on Semimajor Axis , 2001 .

[71]  D. Vokrouhlický DIURNAL YARKOVSKY EFFECT AS A SOURCE OF MOBILITY OF METER-SIZED ASTEROIDALFRAGMENTS : II. NON-SPHERICITY EFFECTS , 1998 .

[72]  Francesco Marzari,et al.  Collisional Evolution of Asteroid Families , 1995 .

[73]  K. Marti,et al.  COSMIC-RAY EXPOSURE HISTORY OF ORDINARY CHONDRITES , 1992 .

[74]  Richard P. Binzel,et al.  Asteroid collisional history - Effects on sizes and spins , 1989 .

[75]  R. Reedy,et al.  Irradiation records in meteorites , 1988 .

[76]  G. Wetherill Steady state populations of Apollo-Amor objects , 1979 .

[77]  E. Opik,et al.  Interplanetary encounters: Close-range gravitational interactions , 1976 .

[78]  J. O'keefe,et al.  Tektites and their origin , 1976 .

[79]  V. V. Radzievskii A mechanism for the disintegration of asteroids and meteorites , 1952 .