Potential of the solid-Earth response for limiting long-term West Antarctic Ice Sheet retreat in a warming climate

[1]  Ricarda Winkelmann,et al.  Consistent evidence of increasing Antarctic accumulation with warming , 2015 .

[2]  P. Whitehouse,et al.  Effect of GIA models with 3D composite mantle viscosity on GRACE mass balance estimates for Antarctica , 2015 .

[3]  Richard B. Alley,et al.  Potential Antarctic Ice Sheet retreat driven by hydrofracturing and ice cliff failure , 2015 .

[4]  E. Rignot,et al.  Mass loss of the Amundsen Sea Embayment of West Antarctica from four independent techniques , 2014 .

[5]  D. Wiens,et al.  Upper mantle seismic anisotropy beneath the West Antarctic Rift System and surrounding region from shear wave splitting analysis , 2014 .

[6]  B. Scheuchl,et al.  Widespread, rapid grounding line retreat of Pine Island, Thwaites, Smith, and Kohler glaciers, West Antarctica, from 1992 to 2011 , 2014 .

[7]  R. S. W. van de Wal,et al.  A fully coupled 3-D ice-sheet–sea-level model: algorithm and applications , 2014 .

[8]  S. Nowicki,et al.  Future Antarctic bed topography and its implications for ice sheet dynamics , 2014 .

[9]  A. Payne,et al.  Retreat of Pine Island Glacier controlled by marine ice-sheet instability , 2014 .

[10]  I. Sasgen,et al.  The Deformational Response of a Viscoelastic Solid Earth Model Coupled to a Thermomechanical Ice Sheet Model , 2014, Surveys in Geophysics.

[11]  D. Pollard,et al.  A 3-D coupled ice sheet – sea level model applied to Antarctica through the last 40 ky , 2013 .

[12]  D. Wiens,et al.  Seismic detection of an active subglacial magmatic complex in Marie Byrd Land, Antarctica , 2013 .

[13]  H. Hellmer,et al.  Southern Ocean warming and increased ice shelf basal melting in the twenty-first and twenty-second centuries based on coupled ice-ocean finite-element modelling , 2013, Ocean Dynamics.

[14]  E. Ivins,et al.  Antarctic contribution to sea level rise observed by GRACE with improved GIA correction , 2013 .

[15]  M. R. van den Broeke,et al.  Future surface mass balance of the Antarctic ice sheet and its influence on sea level change, simulated by a regional atmospheric climate model , 2013, Climate Dynamics.

[16]  Gaël Durand,et al.  Grounding-line migration in plan-view marine ice-sheet models: results of the ice2sea MISMIP3d intercomparison , 2013, Journal of Glaciology.

[17]  William H. Lipscomb,et al.  Ice-sheet model sensitivities to environmental forcing and their use in projecting future sea level (the SeaRISE project) , 2013, Journal of Glaciology.

[18]  D. Vaughan,et al.  Grounding-line retreat of the West Antarctic Ice Sheet from inner Pine Island Bay , 2013 .

[19]  Axel Rülke,et al.  An investigation of Glacial Isostatic Adjustment over the Amundsen Sea sector, West Antarctica , 2012 .

[20]  Eric Rignot,et al.  A Reconciled Estimate of Ice-Sheet Mass Balance , 2012, Science.

[21]  Matt A. King,et al.  Lower satellite-gravimetry estimates of Antarctic sea-level contribution , 2012, Nature.

[22]  Ian M. Howat,et al.  A new bed elevation dataset for Greenland , 2012 .

[23]  David Pollard,et al.  Description of a hybrid ice sheet-shelf model, and application to Antarctica , 2012 .

[24]  Bo Sun,et al.  Bedmap2: improved ice bed, surface and thickness datasets for Antarctica , 2012 .

[25]  G. Gudmundsson Ice-shelf buttressing and the stability of marine ice sheets , 2012 .

[26]  Matt A. King,et al.  Increased ice loading in the Antarctic Peninsula since the 1850s and its effect on glacial isostatic adjustment , 2012 .

[27]  David Pollard,et al.  A simple inverse method for the distribution of basal sliding coefficients under ice sheets, applied to Antarctica , 2012 .

[28]  Matt A. King,et al.  A new glacial isostatic adjustment model for Antarctica: calibrated and tested using observations of relative sea‐level change and present‐day uplift rates , 2012 .

[29]  S. Levitus,et al.  World ocean heat content and thermosteric sea level change (0–2000 m), 1955–2010 , 2012 .

[30]  D. Pollard,et al.  Evolution of a coupled marine ice sheet–sea level model , 2011 .

[31]  R. Alley,et al.  Stability of the West Antarctic ice sheet in a warming world , 2011 .

[32]  J. Wahr,et al.  Ice Age Earth Rotation , 2011 .

[33]  A. Ganopolski,et al.  Multistability and critical thresholds of the Greenland ice sheet , 2010 .

[34]  P. Clark,et al.  Sea level as a stabilizing factor for marine-ice-sheet grounding lines , 2010 .

[35]  E. Bueler,et al.  The Potsdam Parallel Ice Sheet Model (PISM-PIK) – Part 2: Dynamic equilibrium simulation of the Antarctic ice sheet , 2010 .

[36]  C. Amante,et al.  ETOPO1 arc-minute global relief model : procedures, data sources and analysis , 2009 .

[37]  Z. Martinec,et al.  Glacial isostasy and plate motion , 2008 .

[38]  David M. Holland,et al.  Modelling Circumpolar Deep Water intrusions on the Amundsen Sea continental shelf, Antarctica , 2008 .

[39]  J. Oerlemans,et al.  Effect of isostasy on dynamical ice sheet modeling: A case study for Eurasia , 2008 .

[40]  C. Schoof Ice sheet grounding line dynamics: Steady states, stability, and hysteresis , 2007 .

[41]  Z. Martinec,et al.  An Estimate of Global Mean Sea-level Rise Inferred from Tide-gauge Measurements Using Glacial-isostatic Models Consistent with the Relative Sea-level Record , 2007 .

[42]  On Postglacial Sea Level , 2007 .

[43]  E. van Meijgaard,et al.  Reassessment of the Antarctic surface mass balance using calibrated output of a regional atmospheric climate model , 2006 .

[44]  T. Wilson,et al.  Subglacial bedrock structure in the Transantarctic Mountains and its influence on ice sheet flow: insights from RADARSAT SAR imagery , 2004 .

[45]  Andrea Morelli,et al.  Seismological imaging of the Antarctic continental lithosphere: a review , 2004 .

[46]  Carlo Barbante,et al.  Eight glacial cycles from an Antarctic ice core , 2004, Nature.

[47]  E. Ivins,et al.  Lateral viscosity variations beneath Antarctica and their implications on regional rebound motions and seismotectonics , 2004 .

[48]  J. Mitrovica,et al.  On post-glacial sea level: I. General theory , 2003 .

[49]  K. Lambeck,et al.  Effect of isostatic rebound on modelled ice volume variations during the last 200 kyr , 2001 .

[50]  Z. Martinec Spectral–finite element approach to three‐dimensional viscoelastic relaxation in a spherical earth , 2000 .

[51]  Josefino C. Comiso,et al.  Variability and Trends in Antarctic Surface Temperatures from In Situ and Satellite Infrared Measurements , 2000 .

[52]  J. Behrendt Crustal and lithospheric structure of the West Antarctic Rift System from geophysical investigations — a review , 1999 .

[53]  S. Tulaczyk,et al.  Pleistocene collapse of the west antarctic ice sheet , 1998, Science.

[54]  M. Oppenheimer,et al.  Global warming and the stability of the West Antarctic Ice Sheet , 1998, Nature.

[55]  P. Huybrechts,et al.  A comparison of different ways of dealing with isostasy: examples from modelling the Antarctic ice sheet during the last glacial cycle , 1996, Annals of Glaciology.

[56]  Erik R. Ivins,et al.  On lateral viscosity contrast in the mantle and the rheology of low-frequency geodynamics , 1995 .

[57]  J. Oerlemans,et al.  Response of the Antarctic ice sheet to future greenhouse warming , 1990 .

[58]  D. L. Anderson,et al.  Preliminary reference earth model , 1981 .

[59]  C. Bentley,et al.  A Model for Holocene Retreat of the West Antarctic Ice Sheet , 1978, Quaternary Research.

[60]  J. Clark,et al.  Future sea-level changes due to West Antarctic ice sheet fluctuations , 1977, Nature.

[61]  W. Peltier The impulse response of a Maxwell Earth , 1974 .

[62]  A. Foldvik,et al.  Conditional instability of sea water at the freezing point , 1974 .

[63]  J. Weertman On the Sliding of Glaciers , 1957, Journal of Glaciology.