Multiplicative Noise Removal via a Novel Variational Model

Multiplicative noise appears in various image processing applications, such as synthetic aperture radar, ultrasound imaging, single particle emission-computed tomography, and positron emission tomography. Hence multiplicative noise removal is of momentous significance in coherent imaging systems and various image processing applications. This paper proposes a nonconvex Bayesian type variational model for multiplicative noise removal which includes the total variation (TV) and the Weberized TV as regularizer. We study the issues of existence and uniqueness of a minimizer for this variational model. Moreover, we develop a linearized gradient method to solve the associated Euler-Lagrange equation via a fixed-point iteration. Our experimental results show that the proposed model has good performance.

[1]  S. Mallat A wavelet tour of signal processing , 1998 .

[2]  Jean-Michel Morel,et al.  A Review of Image Denoising Algorithms, with a New One , 2005, Multiscale Model. Simul..

[3]  Shixin Cheng,et al.  Visual compander in wavelet-based image coding , 1998 .

[4]  Jong-Sen Lee,et al.  Digital Image Enhancement and Noise Filtering by Use of Local Statistics , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  Ron Kimmel,et al.  Variational Restoration and Edge Detection for Color Images , 2003, Journal of Mathematical Imaging and Vision.

[6]  Tony F. Chan,et al.  The digital TV filter and nonlinear denoising , 2001, IEEE Trans. Image Process..

[7]  David Zhang,et al.  Two-stage image denoising by principal component analysis with local pixel grouping , 2010, Pattern Recognit..

[8]  José M. Bioucas-Dias,et al.  Total variation restoration of speckled images using a split-bregman algorithm , 2009, 2009 16th IEEE International Conference on Image Processing (ICIP).

[9]  Mohamed-Jalal Fadili,et al.  Multiplicative Noise Cleaning via a Variational Method Involving Curvelet Coefficients , 2009, SSVM.

[10]  Jianhong Shen,et al.  On the foundations of vision modeling: I. Weber’s law and Weberized TV restoration , 2003 .

[11]  Tony F. Chan,et al.  Variational Restoration of Nonflat Image Features: Models and Algorithms , 2001, SIAM J. Appl. Math..

[12]  Donald Geman,et al.  Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images , 1984 .

[13]  Michael K. Ng,et al.  A New Total Variation Method for Multiplicative Noise Removal , 2009, SIAM J. Imaging Sci..

[14]  Gilles Aubert,et al.  A Variational Approach to Removing Multiplicative Noise , 2008, SIAM J. Appl. Math..

[15]  Zhengzhou Li,et al.  Speckle reduction by adaptive window anisotropic diffusion , 2009, Signal Process..

[16]  Stanley Osher,et al.  Multiplicative Denoising and Deblurring: Theory and Algorithms , 2003 .

[17]  Jianhong Shen,et al.  Weberized Mumford-Shah Model with Bose-Einstein Photon Noise , 2006 .

[18]  Santiago Aja-Fernández,et al.  On the estimation of the coefficient of variation for anisotropic diffusion speckle filtering , 2006, IEEE Transactions on Image Processing.

[19]  David Zhang,et al.  PCA-Based Spatially Adaptive Denoising of CFA Images for Single-Sensor Digital Cameras , 2009, IEEE Transactions on Image Processing.

[20]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[21]  Alexander A. Sawchuk,et al.  Adaptive Noise Smoothing Filter for Images with Signal-Dependent Noise , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[22]  Florence Tupin,et al.  Iterative Weighted Maximum Likelihood Denoising With Probabilistic Patch-Based Weights , 2009, IEEE Transactions on Image Processing.

[23]  Ernst Heinrich Weber,et al.  De pulsu, resorptione, auditu et tactu. Annotationes anatomicae et physiologicae , 1834 .

[24]  Junfeng Yang,et al.  A Fast Algorithm for Edge-Preserving Variational Multichannel Image Restoration , 2009, SIAM J. Imaging Sci..

[25]  P. Townsend Principles and Applications of Imaging Radar: Manual of Remote Sensing , 2000 .

[26]  Y. Q. Fu,et al.  Perceptual digital watermark of images using wavelet transform , 1998 .

[27]  Carl-Fredrik Westin,et al.  Oriented Speckle Reducing Anisotropic Diffusion , 2007, IEEE Transactions on Image Processing.

[28]  Patrick L. Combettes,et al.  Signal Recovery by Proximal Forward-Backward Splitting , 2005, Multiscale Model. Simul..

[29]  I. Johnstone,et al.  Adapting to Unknown Smoothness via Wavelet Shrinkage , 1995 .

[30]  Gabriele Steidl,et al.  Removing Multiplicative Noise by Douglas-Rachford Splitting Methods , 2010, Journal of Mathematical Imaging and Vision.

[31]  Jianing Shi,et al.  A Nonlinear Inverse Scale Space Method for a Convex Multiplicative Noise Model , 2008, SIAM J. Imaging Sci..

[32]  Scott T. Acton,et al.  Speckle reducing anisotropic diffusion , 2002, IEEE Trans. Image Process..

[33]  Lei Zhang,et al.  Noise Reduction for Magnetic Resonance Images via Adaptive Multiscale Products Thresholding , 2003, IEEE Trans. Medical Imaging.

[34]  Curtis R. Vogel,et al.  Iterative Methods for Total Variation Denoising , 1996, SIAM J. Sci. Comput..